Phase Structure of Strongly Interacting Matter beyond Mean Field

Pengfei Zhuang
Physics Department, Tsinghua University, Beijing

We discuss chiral symmetry, isospin symmetry and $U_A(1)$ symmetry beyond mean field approximation in effective models at finite T and B.

Spontaneous Symmetry Breaking and QCD Phase Diagram

condensate $\langle \bar{q}q \rangle \rightarrow$ chiral symmetry breaking

condensate $\langle qq \rangle \rightarrow$ color symmetry breaking

condensate $\langle \pi \rangle \rightarrow$ isospin symmetry breaking
Quantum Fluctuations above Mean Field

- **loop summation**
 - mean field (classical) approximation
 - Gaussing fluctuations
 - loop summation (hard thermal loop resummation, hard dense loop resummation, RPA, DSE, CJT, ……)

\[
\langle \ldots \rangle \approx X + \lambda X + \lambda^2 X + \ldots = \frac{X}{1 - \lambda X}
\]

- **renormalization group (FRG)**
 - based on symmetry and space-time dimension
 - model independent critical phenomena

- **lattice simulations**
Chiral Symmetry Restoration, Pion Superfluid and $U_A(1)$ Symmetry at Finite Temperature with FRG
Flow Equation for Effective Potential
in SU(2) Quark-Meson Model

\[\Gamma = \int_x \left[\bar{\psi} S \psi + \left((\partial_\mu + 2\delta_{\mu 0}\mu I)\pi_- \right) \left((\partial_\mu - 2\delta_{\mu 0}\mu I)\pi_+ \right) + \frac{1}{2}(\partial_\mu \sigma)^2 + \frac{1}{2}(\partial_\mu \pi_0)^2 + U(\phi^2) - c\sigma \right] \]

\[S = \begin{pmatrix} M_+ & -\sqrt{2}g\gamma_5\pi_- \\ -\sqrt{2}g\gamma_5\pi_+ & M_- \end{pmatrix} \]

\[M_\pm = i(\phi \pm \gamma_0\mu I) + ig(\sigma \pm i\gamma_5\pi_0) \]

For uniform field configuration

\[\Gamma_k = \beta V U_k \]

\[\partial_k U_k = \text{Tr} \int_p \left[\frac{1}{2} G_{\phi,k}(p) R_{\phi,k}(p) - G_{\psi,k}(p) R_{\psi,k}(p) \right] \]

FRG modified quark and meson propagators

\[G_{\phi,k}(q) = \left[\Gamma_k^{(2)}[\phi] + R_{\phi,k}(q) \right]^{-1} \]

\[G_{\psi,k}(q) = \left[\Gamma_k^{(2)}[\psi] + R_{\psi,k}(q) \right]^{-1} \]

Regulators

\[R_{\phi,k}(q) = (k^2 - \tilde{q}^2) \Theta(\tilde{q}^2 - k^2) \]

\[R_{\psi,k}(q) = \vec{\gamma} \cdot \frac{\tilde{q}}{|\tilde{q}|}(k - |\tilde{q}|) \Theta(|\tilde{q}| - k) \]

Expanding U around mean field

\[\phi \rightarrow \langle \phi \rangle + \phi \quad \text{chiral condensate} \ \langle \sigma \rangle \text{ and pion condensate} \ \langle \pi \rangle \]
Truncating the flow equation by neglecting the p-dependence of higher order vertices $\Gamma^{(3)}$ and $\Gamma^{(4)}$.

\begin{align*}
\partial_{k} \Gamma_{k,p}^{(2)}[\phi_i] &= \tilde{\partial}_{k} \text{Tr} \int_q \left[\frac{1}{2} G_{\phi,k}(q) \Gamma_{k}^{(4)}[\phi,\phi_i]
ight. \\
& \quad - \frac{1}{2} G_{\phi,k}(q) \Gamma_{k}^{(3)}[\phi,\phi_i] G_{\phi,k}(q+p) \Gamma_{k}^{(3)}[\phi,\phi_i] \\
& \quad + \left. G_{\psi,k}(q) \Gamma_{k}^{(3)}[\psi,\phi_i] G_{\psi,k}(q+p) \Gamma_{k}^{(3)}[\psi,\phi_i] \right] \\
\end{align*}
Chiral Symmetry Restoration and Pion Superfluid

Beyond Potential Approximation

Potential Level
Meson Spectral Functions and BCS-BEC Crossover

\[m_D = 2m \]

\[\rho[\pi^+] / \Lambda^2 \]

\[\omega (\text{MeV}) \]

\[m_{\pi^+} = 2m_q \]

BEC

BCS

Pengfei Zhuang (Tsinghua University)

Quarks and Compact Stars 2017, Kyoto, 201702
Meson Spectral Functions and BCS-BEC Crossover

\[\rho(\pi^+) / \Lambda^2 \]

\[\omega \text{ (MeV)} \]

\[(\mu, T) \text{ MeV} \]

- (65,10)
- (110,173.2)
- (190,194.2)

\[T \text{ (MeV)} \]

\[\mu_I \text{ (MeV)} \]

BEC

BCS
Comparison with $O(2)$ Model in Continuous Dimension

Dimension reduction at finite temperature

$$\int_0^\infty d^d x \to \int_0^{T^{-1}} dt \int_0^\infty d^{d-1} x$$

$3 < d < 4$

$$\mathcal{L}_N = \frac{1}{2} \partial_\mu \phi_i \partial^\mu \phi_i + U(\phi^2)$$

$$U(\phi^2) = \frac{1}{2} a \phi_i \phi_i + \frac{1}{4} b (\phi_i \phi_i)^2.$$
$U_A(1)$ Anomaly

$U_A(1)$ anomaly in QCD leads to unconserved axial current

$$\partial_{\mu} J_{5}^{\mu} = 2N_f Q(x) + 2im_0 \bar{\psi} \gamma_5 \psi$$

Topological charge $Q(x) = \frac{g^2}{32\pi^2} F_{\mu\nu}^{a} F_{\mu\nu}^{a}$
Topological susceptibility $\chi = \int d^4x \langle T(Q(x)Q(0)) \rangle$

What is the behavior of $U_A(1)$ anomaly at finite temperature?

JLQCD group claimed $UA(1)$ restoration at $1.2T_c$, but HotQCD group observed the opposite result!

In SU(3) quark-meson model

$$\mathcal{L} = \mathcal{L}_m + \mathcal{L}_q.$$

$$\mathcal{L}_m = \text{Tr}[\partial_{\mu} \Phi \partial^{\mu} \Phi^\dagger] - (m^2 \rho_1 + \lambda_1 \rho_1^2 + \lambda_2 \rho_2^2) + c_\xi + \text{Tr}[H(\Phi + \Phi^\dagger)],$$

$$\mathcal{L}_q = \bar{\psi} (i\gamma^{\mu} \partial_{\mu} - m_0 + \mu \gamma^0 - g \phi_5) \psi$$

$$Q = \frac{c}{2} \left[\frac{2}{27} \pi_0^3 - \frac{1}{\sqrt{27}} \pi_3 - \frac{1}{\sqrt{6}} \pi_0 \left(\sum_{a=1}^{8} (\pi_a^2 - \sigma_a^2) + 2\sigma_0^2 \right) + \frac{1}{2} \pi_3 \left(\sum_{a=4}^{5} (\pi_a^2 - \sigma_a^2) - \sum_{a=6}^{7} (\pi_a^2 - \sigma_a^2) \right)
+ \frac{1}{\sqrt{3}} \pi_8 \left(\sum_{a=1}^{3} (\pi_a^2 - \sigma_a^2) - \sum_{a=4}^{7} (\pi_a^2 - \sigma_a^2) + \pi_1 \left(\sum_{a=4}^{5} (\pi_a \pi_{a+2} - \sigma_a \sigma_{a+2}) + \sqrt{2} \sigma_0 \sigma_1 - \frac{2}{\sqrt{3}} \sigma_1 \sigma_8 \right)
+ \pi_2 \left(\pi_5 \pi_6 - \pi_4 \pi_7 + \sqrt{2} \sigma_0 \sigma_2 - \sigma_5 \sigma_6 - \sigma_4 \sigma_7 - \frac{2}{\sqrt{3}} \sigma_2 \sigma_8 \right) + \sqrt{2} \pi_3 (\sigma_0 \sigma_3 - \sqrt{2} \sigma_3 \sigma_8)
+ \pi_4 \left(\sqrt{2} \sigma_0 \sigma_4 - \sigma_3 \sigma_5 - \sigma_1 \sigma_6 + \sigma_2 \sigma_7 + \frac{1}{\sqrt{3}} \sigma_4 \sigma_8 \right) + \pi_5 \left(\sqrt{2} \sigma_0 \sigma_5 - \sigma_3 \sigma_5 - \sigma_2 \sigma_6 - \sigma_1 \sigma_7 + \frac{1}{\sqrt{3}} \sigma_5 \sigma_8 \right)
- \pi_6 \left(\sigma_1 \sigma_4 - \frac{2}{3} \sigma_0 \sigma_6 - \sigma_3 \sigma_6 + \sigma_2 \sigma_5 - \frac{1}{\sqrt{3}} \sigma_6 \sigma_8 \right) + \pi_7 \left(\sigma_2 \sigma_4 + \frac{2}{3} \sigma_0 \sigma_7 - \sigma_1 \sigma_5 + \sigma_3 \sigma_7 + \frac{1}{\sqrt{3}} \sigma_7 \sigma_8 \right)
+ \sqrt{2} \pi_8 \sigma_0 \sigma_8 \right].$$
$U_A(1)$ Restoration?

$$
\chi = \left(\frac{c}{12\sqrt{6}} \right)^2 \sum_{i,j,k,l,m,n=\sigma_\infty} \int d^4x \left[a_{ijklmn} \langle \varphi_i \rangle \langle \varphi_j \rangle G_{kl}(x,0) \langle \varphi_m \rangle \langle \varphi_n \rangle + b_{ijklmn} \langle \varphi_i \rangle \langle \varphi_j \rangle G_{kl}(x,0) G_{mn}(0,0) \\
+ c_{ijklmn} G_{ij}(x,x) G_{kl}(x,0) \langle \varphi_m \rangle \langle \varphi_n \rangle + d_{ijklmn} \langle \varphi_i \rangle \langle \varphi_j \rangle G_{jm}(x,0) G_{kl}(x,0) \langle \varphi_n \rangle \\
+ e_{ijklmn} G_{ij}(x,x) G_{kl}(x,0) G_{mn}(0,0) + f_{ijklmn} G_{in}(x,0) G_{jm}(x,0) G_{kl}(x,0) \right],
$$

FRG calculated condensates and propagators

1. $U_A(1)$ symmetry cannot be restored even in chiral symmetry restored phase.
2. Fluctuations play an important role at high T.

Pengfei Zhuang (Tsinghua University)

Quarks and Compact Stars 2017, Kyoto, 201702
Chiral Symmetry Restoration in Magnetic Field with RPA
NJL Model in Mean Field

\[\mathcal{L} = \bar{\psi} \left(i \gamma_\nu D^\nu - m_0 \right) \psi + \frac{G}{2} \left[(\bar{\psi} \gamma^5 \psi)^2 + (\bar{\psi} i \gamma_5 \vec{\tau} \psi)^2 \right] \]

\[D^\nu = \partial^\nu + i Q A^\nu \quad \mathbf{B} = (0, 0, B) = \nabla \times \mathbf{A} \]

At mean field level

\[\Omega_{mf} = \frac{m^2}{2G} + \Omega_q, \]

\[\Omega_q = -3 \sum_{f=u,d} \sum_n \alpha_n \int \frac{dp_z}{2\pi} \frac{|Q_f B|}{2\pi} \left[\frac{E_f^+ + E_f^-}{2} + T \ln \left(\left(1 + e^{-E_f^+ / T} \right) \left(1 + e^{-E_f^- / T} \right) \right) \right] \]

Quark dimension reduction in magnetic field

\[2 \int \frac{d^3 \vec{p}}{(2\pi)^3} \rightarrow \sum_{n_f} |Q_f B| \sum_n \frac{\alpha_n}{2\pi} \int \frac{dp_z}{2\pi} \]

Gap equation for the order parameter (quark mass)

\[\frac{\partial \Omega_{mf}}{\partial m} = 0 \]

Magnetic catalysis (MC): \(T_c \) increases with \(B \).

However, inverse magnetic catalysis (IMC) from lattice QCD!

NJL Model beyond Mean Field

Mesons may play important role in the realization of IMC.

Mesons as quantum fluctuations above mean field

\[\neq \frac{1}{1-\chi} \]

\[\rightarrow \text{meson mass } m_M \text{ and coupling constant } g_{Mq\bar{q}} \]

\[\Omega = \Omega_{mf} + \sum_M \Omega_M \]

\[\Omega_M = \int \frac{d^3k}{(2\pi)^3} \left[\frac{E_M}{2} + T \ln \left(1 - e^{-E_M/T} \right) \right] \]

\[\text{meson energy } E_M = \sqrt{m_M^2 + k_3^2 + v_{\perp}^2 (k_1^2 + k_2^2)} \]

\[\text{meson transverse velocity } v_{\perp} = \left(g_0^0 \right)^2 / \left(g_1^0 \right)^2 \]

New gap equation

\[\frac{\partial \Omega}{\partial m} = 0 \]

MC at T=0 and IMC at T_c!
Meson Mass Jump Induced by Quark Dimension Reduction

Quark dimension reduction in magnetic field

\[2 \int \frac{d^3 \vec{p}}{(2\pi)^3} F(p) = \int \frac{p^2 dp}{\pi^2} F(p) \rightarrow \sum_{n,f} \left| \frac{Q_f B}{2\pi} \right| \alpha_n \int \frac{dp_z}{2\pi} F(p) \]

possible infrared divergence in quark momentum integration!

A sudden mass jump for the Goldstone mode at the Mott transition point \((m_\pi = 2m_q)\), induced by the quark dimension reduction in magnetic field.

→ sudden enhancement of hadronization in heavy ion collisions?
Chiral and Deconfinement Phase Transitions in PNJL

PNJL model \((Fukushima, Weise et al.)\)

\[
\mathcal{L} = \bar{\psi} (i\gamma_{\mu} D^{\mu} - m_0) \psi + \frac{G}{2} \left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5 \tau \psi)^2 \right] - \mathcal{U}(\Phi, \bar{\Phi})
\]

\[
\frac{\mathcal{U}}{T^4} = -\frac{b_2(T)}{2} \bar{\Phi} \Phi - \frac{b_3}{6} (\bar{\Phi}^3 + \Phi^3) + \frac{b_4}{4} (\bar{\Phi} \Phi)^2
\]

IMC effect on both chiral and deconfinement phase transitions.
Summary

1) Significant fluctuations at both low (mesons) and high (quarks) temperature.

2) Fluctuations induced change in phase structure at finite temperature:
 a) $U_A(1)$ symmetry breaking even in chiral restoration phase,
 b) model independent critical exponents, and
 c) BCS-BEC crossover in pion superfluid.

3) Fluctuations induced change in phase structure in magnetic field:
 a) inverse magnetic catalysis for both chiral and deconfinement phase transitions,
 b) mass jump for the Goldstone mode at Mott transition point.