Hyperon Mixing and Two Serious Problems in Neutron Stars *

T. Takatsuka (RIKEN, Iwate Univ.)

- Characteristic properties of hyperon-mixed NSs
 ------ too-soft EOS and too-rapid Cooling
- Toward solving the problem of too-soft EOS
- Hyperon Superfluidity under the EOS compatible with 2-solar-mass NSs
- Concluding remarks

Characteristic properties of hyperon-mixed NSs

Hyperon(Y) mixing in neutron stars (NSs) has gathered much attention and has been investigated in many literatures. Nowadays, it is well known that, primarily Y-mixed phase sets on at around the density $\rho \sim (2-4)$ times nuclear density below the central density of NSs.

Then what happens for Y-mixed NSs? Here I emphasize two points:

① **Too-softened EOS**
A most striking aspect is a dramatic softening of the EOS, being unable to sustain even 1.44 solar-mass known as a canonical mass. This too-soft EOS problem is necessarily highlighted by recent observation of massive NSs with 2 solar-mass and the contradiction between theory and observation is sometimes called "hyperon puzzle" ("hyperon crisis"). By the way, long before the 2 solar-mass observations, the significance of the problem had been claimed in our works[*], remarking a particular softening mechanism and introducing the "universal 3-body force",

Another serious problem is in the difficulties to explain the thermal evolution of NSs. Y-mixed NSs have extremely high neutrino-emissibility through β-decay processes including Y (Y-Durca; Y-cooling), which is larger by (6-7) orders of magnitudes than that of modified URCA (Murca; standard cooling). As a result, it leads to a problem that all the NSs from which thermal X-ray are detected should have very light mass, $M < M_{\odot}$ in reference to $M(Y\text{-mixed})$ discussed in ①. This is very unlikely by considering a population of observed NS masses, $M(\text{obs}) > M_{\odot}$.

Therefore we need some suppression mechanism for Y-cooling. One of the candidates is a realization of Y-superfluids, whose possibility is discussed later on.

Here we stress that these two serious problems(①, ②) should be solved simultaneously.

In the following slides, I show the situations closely related to ① and ②.
G-matrix-based Effective Interaction Approach

Nishizaki-Yamamoto-Takatsuka (2002)
$M_{max} < M_{obs}$ (Softened EOS by Y)

After 2M_sun observations

Strong Softening of the EOS

Hyperon Crisis
(by T. Hatsuda)
Even Λ-only mixing, situation is the same!
Brueckner-Hartree-Fock

L-Vidana et al, P.R. C62 (2000) 035801
M. Baldo et al, P.R. C61 (2000) 055801
Hyperons are always present
→ profound consequence for NS-mass

G-matrix with nucleonic 3-body force

Chiral SU(3) RMF

Short summary

1) Y-mixing is sure to occur (\(\Lambda,\) at least)
2) Even if only the \(\Lambda\)-mixing could occur, the softening situation is unchanged.
3) We have a dilemma i.e., enhancing NN repulsion leads to more developed Y-mixing at lower densities and stronger softening effects which compensates the enhanced NN repulsive contribution.

Serious Something are missing!
Toward solving the problem of too-soft EOS

So many works have been done for solving the problem of too-soft EOS of Y-mixed NSs. As examples:

1) In pure hadron matter framework:
 • Universal 3-body force repulsion in potential description approach,
 • δ-meson effects, Fock term contribution, extended parameter-space, etc. in field description approach such as RMF,

2) In hadron matter plus quark matter framework:
 • H-Q crossover transition, and H-Q first-order transition.

3) Under a circumstance of ultra strong magnetic field.
In our earlier works*, we have found that possible candidate to solve the problem is

Universal 3-body force

: an extended use of the phenomenological 3-body force of Illinois’s type (Friedman-Pandharipande**):

\[\text{NNN} \rightarrow \text{BBB} \]

Dramatic softening of EOS \rightarrow Necessity of “Extra Repulsion”

(a) 2B come in short distance
(b) Deformation (resistance)
(c) Fusion into 6-quark state

(by R. Tamagaki)

Energy barrier ($\sim 2\text{GeV}$) corresponds to repulsive core of BB interactions
BBB interactions

Additionally 2GeV excitation

Height of 3-body pot.

Fig. 7. Pictorial view of the exotic tribaryon and its preformation stage; (left) string-junction net of the tribaryon T^7_9, (right) $BBB(\bar{B}B)(\bar{B}B)$ states arising from the fission of the interjunction strings, and (bottom) an example illustrating one of many possible configurations for full overlap of BBB, where the dotted area indicates the formation region of a string-junction net. Such view is the unfolded-sheet drawing of the tribaryon having three-dimensional spread.
Universal 3-body Force

SJM BBB

Pom.-exch.BBB

\[M/M_\odot \]

\[2\pi\Delta + SJM2 \]

\[+ SJM1 \]

\[TNI6u \]

\[2\pi\Delta \]

\[R \text{ [km]} \]

\[\rho_c/\rho_0 \text{ [g cm}^{-3}] \]

\[R \text{ [km]} \]

\[\text{[M sol]} \]

Universal 3-body Force

First-order H-Q transition
(σ-ω-ρ-δ-ϕ model)
Horvath-Souza(2017)
Effects of Σ -pot. , ϕ

Dep. on Many-body Approach , cutt-off

Interpolation by 3-window approach

○ From a view of “H-Q Crossover” due to percolation

\[
\varepsilon(\rho)_H = \varepsilon_H(\rho)f_-(\rho) + \varepsilon_Q(\rho)f_+(\rho),
\]
\[
f_{\pm}(\rho) = \frac{1}{2}\{1 + \tanh(\frac{\rho - \bar{\rho}}{\Gamma})\}
\]

○ Pressure \(P(\rho)\) is derived from

\[
P(\rho) = \rho^2 \partial (\varepsilon(\rho)/\rho)/\partial \rho
\]

H-Q crossover model
Kojo-Powell-Song-Baym (2015)

Blasche-Castilo-Benic-Contrera-Lastowiecki (2013)
Under strong magnetic field

Lopes-Menezes (2012)

Sotani-Tatsumi (2017)
Here we reconsider the existence or nonexistence problem of Λ-superfluid in NSs under the conditions:

1. Y-mixed NS EOS with universal 3-body force from the SJM, which is compatible with 2-solar-mass NSs.

2. Pauli-blocking effects in $\Lambda\Lambda-\Xi N$ coupling channel giving rise to the additional attraction in the $\Lambda\Lambda$ pairing interaction.
ΛΛ—ΞN coupling

In free space: $V_{ΛΛ}^{\text{(free)}}$ is more attractive than $\tilde{V}_{ΛΛ}^{\text{(medium)}}$ in medium.
With NAGARA
ND-Soft original
ND-Soft with Pauli-Blocking (VF3 in [3])

ΛΛ Pot.

13.4 GeV core
4.4 GeV
2.0 GeV

(MeV)

-100
-50
0
50
100

2 r(fm)

200
400
600
800
1000
Mixing ratio (y) and effective-mas parameter (m^*) ; SJM2 + TNA

<table>
<thead>
<tr>
<th>ρ/ρ_0</th>
<th>$y(\Lambda)$ in%</th>
<th>$m^*(\Lambda)$</th>
<th>$Y(n)$ in %</th>
<th>$m^*(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>0.02</td>
<td>0.828</td>
<td>94.5</td>
<td>0.615</td>
</tr>
<tr>
<td>4.6</td>
<td>0.25</td>
<td>0.834</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.93</td>
<td>0.847</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>1.71</td>
<td>0.859</td>
<td>92.7</td>
<td>0.602</td>
</tr>
<tr>
<td>5.2</td>
<td>2.57</td>
<td>0.869</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>3.79</td>
<td>0.872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>4.47</td>
<td>0.871</td>
<td>86.6</td>
<td>0.586</td>
</tr>
<tr>
<td>5.6</td>
<td>5.16</td>
<td>0.870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>6.55</td>
<td>0.866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>7.93</td>
<td>0.860</td>
<td>76.6</td>
<td>0.568</td>
</tr>
</tbody>
</table>

Larger m^* for Λ works for a realization of Λ-super
Present
EOS: SJM2+TNA
Pairing int.
$\Sigma\Sigma \rightarrow ND$-Sof including Pauli-blocking effects

Previous
EOS: TNI6u
Pairing int.
ND-Soft, (phase-shift-equivalent to ND)
Without Pauli Blocking.

Previous

Present
EOS: SJM2+TNA
Pairing int.:
$\Sigma\Sigma \rightarrow ND$-Sof
$\Lambda\Lambda \rightarrow VF2,3$ including Pauli-blocking effects
Cooling scenario depending on NS mass

(A) Lighter NSs (Murca; warm)

(B) Medium-mass NSs (suppressed Y-Durca; cool)

(C) Massive NSs (Y-Durca; very cold)
Concluding remarks

1. Due to the Y-mixing in NS cores, we are faced to two serious problems; too-soft EOS and too-rapid cooling. These two problems have to be solved simultaneously.

2. In the case of pure hadronic framework, the universal 3-body force is a solution for the problem of too-soft EOS. In the framework of hadron matter plus quark matter, the H-Q crossover transition model is a promising candidate.

3. Λ-superfluidity can be revived by taking into account the Pauli-blocking effects in $\Lambda \Lambda - \Xi N$ channel coupling, keeping less attractive $\Lambda \Lambda$ interaction suggested by the “NAGARA event”. This leads to a cooling scenario of NSs consistent with surface-temperature observations.

Finally we wish to stress that recent observation of massive NSs has opened a new paradigm for dense matter physics, and anyway needs more investigations.