Relativistic mean-field models of hadron and quark matter in neutron stars

Konstantin Maslov

National Research Nuclear University "MEPhl", Moscow, Russia Joint Institute for Nuclear Research, Dubna, Russia



# Normal stars

The Sun:

 $\begin{array}{ll} M_{\odot} = 2 \times 10^{33} \ g = 3.3 \times 10^6 \ M_{\oplus} & \bigcirc - \ \text{Sun} \\ R_{\odot} \sim 10^6 \ km, & R_{\oplus} = 6400 \ km & \oplus - \ \text{Earth} \end{array}$ 



Life of a star has the beginning and the end...







# Massive star schematic

before the explosion



• White dwarf-like core cannot resist gravitation  $\Rightarrow$  instability (core-collapse)



Space telescope Chandra (1999)

SN 1054 Crab nebula Described by Chinese astronomers (1054) Recognized also as a "guest star" in "Diary of the Clear Moon" by Fujiwara no Teika



Optical

Radio

X-rays





### Pulsar was discovered in1968 году Period of 33 ms



Chiba 千葉市

Ichihara



### Estimate for the density

For the crab pulsar:  $\bar{\rho} \ge 1.6 \times 10^{11} \frac{g}{cm^3}$ For a period of 1 ms:  $\bar{\rho} \ge 1.4 \times 10^{14} \frac{g}{cm^3}$ 

Minimum density is about the nuclear density



We can study matter at the conditions, unreachable on the Earth

Strong, gravitational, weak and electromagnetic interactions together!

# Canonical possibilities for NS structure



II. A method of stiffening the relativistic mean-field (RMF) equation of state and its application to the description of neutron stars.

Konstantin A. Maslov In collaboration with D. N. Voskresensky and E. E. Kolomeitsev

> National Research Nuclear University "MEPhl" Joint Institute for Nuclear Resarch, Dubna



Chiba Institute of Technology, 2017

#### Introduction

- Description of the neutron star (NS) requires an equation of state (EoS) of cold (T = 0) dense (n = 1-10 n<sub>0</sub>, where n<sub>0</sub>-nuclear saturation density) strongly interacting baryonic matter.
   For a given EoS the NS mass and radius can be obtained for a given central density.
- Any EoS is characterized by a maximum supported NS mass. A viable EoS should pass the observed maximum NS mass constraint  $M > 2.01 \pm 0.04 M_{\odot}$  and many others.
- Any new degree of freedom softens the EoS and lowers the maximum NS mass.
- There exist realistic phenomenological EoSs well tuned to describe finite nuclei and low-density nuclear matter properties, but yielding a low maximum NS mass
- We want to develop a method of stiffening of an EoS at high densities without altering it at low densities.

#### Obtaining the EoS

QCD does not allow for quantitative results for the hadronic energy scale There are many of EoSs, built in different ways:

Microscopic

- Based on many-body theories, starting from the assumed properties of 2- (or more) body interactions in the vacuum
- Robust for low densities n, but large uncertainties already for  $n \simeq n_0$
- ► Many of them are non-relativistic ⇒ causality violation at large densities (speed of sound v<sub>S</sub> > c)

#### Phenomenological approach

- Models with interaction strengths adjusted to reproduce the observables in many-body systems.
- ▶ Relatively simple and relativistic ⇒ assure causality

Phenomenological relativistic mean-field (RMF) models are successfully applied to description of finite nuclei, heavy-ion collisions and neutron stars

#### $\mathrm{Hyperon}/\Delta \,\, \mathrm{puzzle}$



With an increase of the density already at  $n \gtrsim 2 \div 3 n_0$  the conversion  $n \rightarrow B + Q_B e^-$  becomes energetically favorable. Chemical equilibrium condition:

 $\mu_B = \mu_N - Q_B \mu_e$ 

In standard realistic models the maximum NS mass decreases below the observed values.

Problem can be resolved in relativistic mean-field (RMF) models by taking into account a hadron mass and couplings in-medium modifications [K. A. Maslov, E. E. Kolomeitsev and D. N. Voskresensky, Phys. Lett. B **748**, 369 (2015)]

#### Contradicting constraints

Constraint for the pressure, obtained from analyses of transverse and elliptic flows in heavy-ion collisions

Passed by rather soft EoSs



### The maximum NS mass constraint favors stiff $\ensuremath{\mathsf{EoS}}$



figures from [T. Klahn et al. PRC74 (2006)]

#### Traditional RMF models

H.-P. Dürr PR103 1956, J. D. Walecka 1974, J. Boguta & A. R. Bodmer 1977 Nonlinear Walecka (NLW) model

$$\begin{split} \mathcal{L} &= \bar{\Psi}_N \Big[ (i\partial_\mu - g_\omega \omega_\mu - g_\rho \vec{t} \vec{\rho}_\mu) \gamma^\mu - m_N + g_\sigma \sigma \Big] \Psi_N \quad \text{nucleons} \\ &+ \frac{1}{2} \Big[ (\partial_\mu \sigma)^2 - m_\sigma^2 \sigma^2 \Big] - \Big( \frac{b}{3} m_N (g_\sigma \sigma)^3 + \frac{c}{4} (g_\sigma \sigma)^4 \Big) \quad \text{scalar field} \\ &- \frac{1}{4} \omega_{\mu\nu} \omega^{\mu\nu} + \frac{1}{2} m_\omega^2 \omega_\mu^2 - \frac{1}{4} \vec{\rho}_{\mu\nu} \vec{\rho}^{\mu\nu} + \frac{1}{2} m_\rho^2 (\vec{\rho}_\mu)^2 \quad \text{vector fields} \\ &+ \sum_{l=e,\mu} \bar{\psi}_l (i\partial_\mu - m_l) \psi_l \quad \text{leptons} \end{split}$$

#### Mean-field approximation

Static homogeneous meson fields:

$$\sigma \to \langle \sigma \rangle, \quad \omega^{\mu} \to \langle \omega^{\mu} \rangle \equiv (\omega_0, \vec{0}), \quad \rho_i^{\mu} \to \langle \rho_i^{\mu} \rangle \equiv \delta_{i3}(\rho_0, \vec{0}).$$

Eqs. of motion for vector fields:

$$\left\langle \frac{\partial \mathcal{L}}{\partial \omega^0} \right\rangle = 0 \Rightarrow \omega_0 = \frac{g_\omega (n_n + n_p)}{m_\omega^2} \\ \left\langle \frac{\partial \mathcal{L}}{\partial \rho_3^0} \right\rangle = 0 \Rightarrow \rho_0 = \frac{g_\rho (n_n - n_p)}{2m_\rho^2}$$

#### Energy density

Nucleon effective mass  $m_N^* = m_N - g_\sigma \sigma$ . In terms of  $f \equiv \frac{g_\sigma \sigma}{m_N}$ :

$$\begin{split} E &= \frac{m_{\sigma}^4 f^2}{2C_{\sigma}^2} + U(f) + \frac{C_{\omega}^2 (n_n + n_p)^2}{2m_N^2} + \frac{C_{\rho}^2 (n_n - n_p)^2}{8m_N^2} \\ &+ \sum_{i=n,p} \int_0^{p_{\mathrm{F},i}} \frac{p^2 \, dp}{\pi^2} \sqrt{p^2 + m_N^{*2}} + \sum_{l=e,\mu} \int_0^{p_{\mathrm{F},i}} \frac{p^2 dp}{\pi^2} \sqrt{p^2 + m_l^2} \,, \end{split}$$
  
Free parameters:  $C_i = \frac{g_{iN} m_N}{m_i}, \quad i = \sigma, \omega, \rho + \text{parameters of } U(\sigma) :$ 

 $U(\sigma)\equiv m_N^4(\frac{b}{3}f^3+\frac{c}{4}f^4)$ 

Equation of motion for the scalar field:

$$\frac{\partial E}{\partial f} = 0 \Rightarrow \frac{m_N^4 f}{C_\sigma^2} + U'(f) = g_\sigma(n_{S,n} + n_{S,p}),$$
$$n_{S,i} = \int_0^{p_{F,i}} \frac{p^2 dp}{\pi^2} \frac{m_N^*}{2\sqrt{p^2 + m_N^{*2}}}$$

• Electrical neutrality condition:  $n_p = n_e + n_\mu$ 

▶ Beta-equilibrium conditions:  $\mu_e = \mu_n - \mu_p$ ,  $\mu_i = \frac{\partial E}{\partial n_i}$ 

#### Input parameters

Energy per particle expansion:

$$\begin{split} \mathcal{E} &= \mathcal{E}_0 + \frac{K}{18}\epsilon^2 - \frac{K^{'}}{162}\epsilon^3 + \ldots + \beta^2 \left(\mathcal{E}_{\mathrm{sym}} + \frac{L}{3}\epsilon + \frac{K_{\mathrm{sym}}}{18}\epsilon^2 \ldots\right),\\ \epsilon &= (n - n_0)/n_0, \quad \beta = [(n_n - n_p)/n_0]_{n_0} \end{split}$$

$$n_0 = 0.16 \text{ fm}^{-3}, \quad \mathcal{E}_0 = -16 \text{ MeV}, \quad K = 250 \text{ MeV},$$
  
 $\mathcal{E}_{\text{sym}} = 30 \text{ MeV}, \quad m_N^*(n_0)/m_N = 0.8$ 

Gives  $M_{\rm max} = 1.92~M_{\odot}$ 

#### Maximum mass for NLW model

 $M_{\rm max}$  contours for NLW model:



Additional terms  $\sim \omega^4, \omega^2 \vec{\rho}^{\,2}$  for better description of the finite nuclei  $\Rightarrow$  maximum mass decrease [FSUgold Todd-Rutel, Piekariewicz 2005]

#### Can we stiffen the EoS by playing with the scalar field potential?

#### Scalar potential modification



$$\frac{df}{dn} = \frac{2(\partial n_S/\partial n)}{m_N^3 C_{\sigma}^{-2} + \tilde{U}''(f)/m_N - 2(\partial n_S/\partial f)}$$
$$\frac{\partial n_S}{\partial n} = \frac{m_N^*}{2\sqrt{p_F^2 + m_N^{*2}}}, \quad -\frac{\partial n_S}{\partial f} = \int_0^{p_F} \frac{m_N p^4 dp/\pi^2}{(p^2 + m_N^{*2})^{3/2}}$$

NLWcut models [K.A.M., E.E.K. & D.N.V. PRD92 (2015)]

$$U(f) \to \widetilde{U}(f) = U(f) + \Delta U(f)$$

$$\begin{split} & \text{soft core: } \Delta U(f) = \alpha \ln[1 + \exp(\beta(f - f_{\text{s.core}}))], \\ & \text{hard core: } \Delta U(f) = \alpha [\delta f/(f_{h.core} - f)]^{2\beta} \end{split}$$

$$f_{\text{s.core}} = f_0 + c_\sigma (1 - f_0)$$
  
 $m_N^*(f) = m_N (1 - f)$ 



#### Application to the FSUgold model



Can be applied to all RMF models

#### Generalized RMF model

E. E. Kolomeitsev and D. N. Voskresensky NPA 759 (2005) 373

- Model with the in-medium change of masses and coupling constants of all hadrons.
- Common decrease of hadron masses:

$$\frac{m_N^*}{m_N} \simeq \frac{m_\sigma^*}{m_\sigma} \simeq \frac{m_\omega^*}{m_\omega} \simeq \frac{m_\rho^*}{m_\rho}$$

Sigma-field dependent masses and coupling constants
 Model labelled KVOR was succesfully tested in Klaehn at al., PRC74 (2006) 035802.

**Aim:** Construct a better parametrisation (MKVOR) which satisfies new constraints on the nuclear EoS and incorporate more baryon species

#### Generalized relativistic mean-field model

- E. E. Kolomeitsev, D.N. Voskresensky, NPA 759 (2005)
- K. A. M, E. E. K. and D. N. V., Phys. Lett. B 748 (2015),
- E. E. K., K. A. M. and D. N. V., arXiv:1610.09746, to be published in NPA 961 (2017)

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{bar}} + \mathcal{L}_{\text{mes}} + \mathcal{L}_{l}, \\ \mathcal{L}_{\text{bar}} &= \sum_{i=b\cup r} \left( \bar{\Psi}_{i} \left( iD_{\mu}^{(i)}\gamma^{\mu} - m_{i}\Phi_{i}(\sigma) \right) \Psi_{i}, \\ D_{\mu}^{(i)} &= \partial_{\mu} + ig_{\omega i}\chi_{\omega i}(\sigma)\omega_{\mu} + ig_{\rho i}\chi_{\rho i}(\sigma)\vec{t}\vec{\rho}_{\mu} + ig_{\phi i}\chi_{\phi i}(\sigma)\phi_{\mu}, \\ \{b\} &= (N, \Lambda, \Sigma^{\pm,0}, \Xi^{-,0}, \Delta^{-}, \Delta^{0}, \Delta^{+}, \Delta^{++}) \\ \mathcal{L}_{\text{mes}} &= \frac{\partial_{\mu}\sigma\partial^{\mu}\sigma}{2} - \frac{m_{\sigma}^{2}\Phi_{\sigma}^{2}(\sigma)\sigma^{2}}{2} - U(\sigma) + \\ &+ \frac{m_{\omega}^{2}\Phi_{\omega}^{2}(\sigma)\omega_{\mu}\omega^{\mu}}{2} - \frac{\omega_{\mu\nu}\omega^{\mu\nu}}{4} + \frac{m_{\rho}^{2}\Phi_{\rho}^{2}(\sigma)\vec{\rho}_{\mu}\vec{\rho}^{\mu}}{2} - \frac{\rho_{\mu\nu}\rho^{\mu\nu}}{4} + \\ &+ \frac{m_{\phi}^{2}\Phi_{\phi}^{2}(\sigma)\phi_{\mu}\phi^{\mu}}{2} - \frac{\phi_{\mu\nu}\phi^{\mu\nu}}{4}, \\ \omega_{\mu\nu} &= \partial_{\nu}\omega_{\mu} - \partial_{\mu}\omega_{\nu}, \quad \vec{\rho}_{\mu\nu} &= \partial_{\nu}\vec{\rho}_{\mu} - \partial_{\mu}\vec{\rho}_{\nu}, \\ \phi_{\mu\nu} &= \partial_{\nu}\phi_{\mu} - \partial_{\mu}\phi_{\nu}, \\ \mathcal{L}_{l} &= \sum_{l} \bar{\psi}_{l}(i\partial_{\mu}\gamma^{\mu} - m_{l})\psi_{l}, \quad \{l\} = (e, \mu). \end{split}$$

$$\begin{split} E &= \frac{m_N^4 f^2}{2C_{\sigma}^2} \eta_{\sigma}(f) + U(f) + \frac{C_{\omega}^2}{2m_N^2 \eta_{\omega}(f)} \Big(\sum_b x_{\omega b} n_b\Big)^2 + \\ &+ \frac{C_{\rho}^2}{2m_N^2 \eta_{\rho}(f)} \Big(\sum_b x_{\rho b} t_{3b} n_b\Big)^2 + \frac{C_{\omega}^2}{2m_N^2 \eta_{\phi}(f)} \frac{m_{\omega}^2}{m_{\phi}^2} \Big(\sum_H x_{\phi H} n_H\Big)^2 + \\ &+ \sum_b \int_0^{p_{\mathrm{F},b}} \frac{p^2 \, dp}{\pi^2} \sqrt{p^2 + m_b^2 \Phi_b^2(f)} + E_l, \\ E_l &= \sum_{l=e,\mu} \int_0^{p_{\mathrm{F},l}} \frac{p^2 \, dp}{\pi^2} \sqrt{p^2 + m_l^2}, \quad C_i = \frac{g_{iN} m_N}{m_i}, \quad i = \sigma, \omega, \rho. \end{split}$$

#### Scaling functions

In the homogeneous medium  $\eta_M = \Phi_M^2(f)/\chi_{Mb}^2(f)$ ,  $\Phi_N(f) = \Phi_m(f) = 1 - f$ , universal scaling of hadron masses  $\Phi_H(f) = \Phi_N(g_{\sigma H}\chi_{\sigma H}(\sigma)\sigma/m_H) \equiv \Phi_N(x_{\sigma H}\xi_{\sigma H}(f)fm_N/m_H)$ ,  $\xi_{\sigma H}(f) = \chi_{\sigma H}(f)/\chi_{\sigma N}(f)$ .

$$\begin{split} E &= \frac{m_N^4 f^2}{2C_{\sigma}^2} \eta_{\sigma}(f) + U(f) + \frac{C_{\omega}^2}{2m_N^2 \eta_{\omega}(f)} \Big(\sum_b x_{\omega b} n_b\Big)^2 + \\ &+ \frac{C_{\rho}^2}{2m_N^2 \eta_{\rho}(f)} \Big(\sum_b x_{\rho b} t_{3b} n_b\Big)^2 + \frac{C_{\omega}^2}{2m_N^2 \eta_{\phi}(f)} \frac{m_{\omega}^2}{m_{\phi}^2} \Big(\sum_H x_{\phi H} n_H\Big)^2 + \\ &+ \sum_b \int_0^{p_{\mathrm{F},b}} \frac{p^2 \, dp}{\pi^2} \sqrt{p^2 + m_b^2 \Phi_b^2(f)} + E_l, \\ E_l &= \sum_{l=e,\mu} \int_0^{p_{\mathrm{F},l}} \frac{p^2 \, dp}{\pi^2} \sqrt{p^2 + m_l^2}, \quad C_i = \frac{g_{iN} m_N}{m_i}, \quad i = \sigma, \omega, \rho. \end{split}$$

 $\bigoplus \text{ Equation of motion: } \frac{\partial E}{\partial f} = 0 \Rightarrow f(\{n_B\}).$ 

$$\begin{split} E &= \frac{m_N^4 f^2}{2C_{\sigma}^2} \eta_{\sigma}(f) + U(f) + \frac{C_{\omega}^2}{2m_N^2 \eta_{\omega}(f)} \Big(\sum_b x_{\omega b} n_b\Big)^2 + \\ &+ \frac{C_{\rho}^2}{2m_N^2 \eta_{\rho}(f)} \Big(\sum_b x_{\rho b} t_{3b} n_b\Big)^2 + \frac{C_{\omega}^2}{2m_N^2 \eta_{\phi}(f)} \frac{m_{\omega}^2}{m_{\phi}^2} \Big(\sum_H x_{\phi H} n_H\Big)^2 + \\ &+ \sum_b \int_0^{p_{\mathrm{F},b}} \frac{p^2 \, dp}{\pi^2} \sqrt{p^2 + m_b^2 \Phi_b^2(f)} + E_l, \\ E_l &= \sum_{l=e,\mu} \int_0^{p_{\mathrm{F},l}} \frac{p^2 \, dp}{\pi^2} \sqrt{p^2 + m_l^2}, \quad C_i = \frac{g_{iN} m_N}{m_i}, \quad i = \sigma, \omega, \rho. \end{split}$$

 $\begin{array}{l} \bigoplus \mbox{ Equation of motion: } \frac{\partial E}{\partial f} = 0 \Rightarrow f(\{n_B\}). \\ \bigoplus \mbox{ Beta-equilibrium condition: } \mu_n = \mu_B - q_B \mu_e \Rightarrow \{n_B(n)\}. \end{array}$ 

$$\begin{split} E &= \frac{m_N^4 f^2}{2C_{\sigma}^2} \eta_{\sigma}(f) + U(f) + \frac{C_{\omega}^2}{2m_N^2 \eta_{\omega}(f)} \Big(\sum_b x_{\omega b} n_b\Big)^2 + \\ &+ \frac{C_{\rho}^2}{2m_N^2 \eta_{\rho}(f)} \Big(\sum_b x_{\rho b} t_{3b} n_b\Big)^2 + \frac{C_{\omega}^2}{2m_N^2 \eta_{\phi}(f)} \frac{m_{\omega}^2}{m_{\phi}^2} \Big(\sum_H x_{\phi H} n_H\Big)^2 + \\ &+ \sum_b \int_0^{p_{\mathrm{F},b}} \frac{p^2 \, dp}{\pi^2} \sqrt{p^2 + m_b^2 \Phi_b^2(f)} + E_l, \\ E_l &= \sum_{l=e,\mu} \int_0^{p_{\mathrm{F},l}} \frac{p^2 \, dp}{\pi^2} \sqrt{p^2 + m_l^2}, \quad C_i = \frac{g_{iN} m_N}{m_i}, \quad i = \sigma, \omega, \rho. \end{split}$$

 $\begin{array}{l} \bigoplus \text{ Equation of motion: } \frac{\partial E}{\partial f} = 0 \Rightarrow f(\{n_B\}). \\ \bigoplus \text{ Beta-equilibrium condition: } \mu_n = \mu_B - q_B \mu_e \Rightarrow \{n_B(n)\}. \end{array}$ 

Choice  $\eta_i = 1$ ,  $\Phi_N(f) = 1 - f$  reproduces the standard Walecka model

#### KVORcut models

The same procedure can be applied to the scaling functions  $\eta_{\omega}(f)$ :

$$\eta_{\omega}(f)^{\text{KVOR}}(f) \to \eta_{\omega}^{\text{KVOR}}(f) + \frac{a_{\omega}}{2} [1 + \tanh(b_{\omega}(f - f_{\text{cut},\omega}))]$$



#### MKVOR model

The procedure can be applied to the isospin-asymmetric part  $(\eta_{\rho}(f))$ Does not change symmetric matter EoS, but stiffens the asymmetric part



#### Density dependence of the mean scalar field



 $\Phi_N(f) = 1 - f \Rightarrow \mbox{effective mass decreases, then saturates at a constant} \label{eq:phi}$  value

#### Comparison with density-dependent couplings



#### Constraints from HIC

Constraint on the pressure

- from the analyses of transverse and elliptic flows
- from the analyses of kaon production
  [W. G. Lynch et al. Prog. Part. Nucl. Phys. 62 (2009)]
- Cannot be passed by a typical EoS which yields a large maximum NS mass



#### Gravitational vs baryon mass constraint

Pulsar J0737-3039B: (*May be*) electron capture in a O-Ne-Mg white dwarf [P. Podsiadlowski et al. (2005)]

 $M_G = 1.249 \pm 0.001 M_{\odot}, \quad M_B = 1.366 - 1.375 M_{\odot}$ 

1, 2 - assuming no mass loss

dashed rectangle - assuming 1% mass loss



#### Inclusion of hyperons

Hyperons are included with the vector coupling constants from SU(6) symmetry:

$$g_{\omega\Lambda} = g_{\omega\Sigma} = 2g_{\omega\Xi} = \frac{2}{3}g_{\omega N}, \ g_{\rho\Sigma} = 2g_{\rho\Xi} = 2g_{\rho N},$$
$$2g_{\phi\Lambda} = 2g_{\phi\Sigma} = g_{\phi\Xi} = \frac{2\sqrt{2}}{\sqrt{3}}g_{\omega N}.$$

Scalar coupling constants are deduced from hyperon binding energies at  $n = n_0$ :

$$\mathcal{E}_{\text{bind}}^{H}(n_0) = \frac{C_{\omega}^2}{m_N^2} x_{\omega H} n_0 - x_{\sigma H} \xi_{\sigma H}(\bar{f}_0) \left[ m_N - m_N^*(n_0) \right],$$
  
$$\mathcal{E}_{\text{bind}}^{\Lambda} = -28 \text{ MeV}, \quad \mathcal{E}_{\text{bind}}^{\Sigma} = +30 \text{ MeV}, \quad \mathcal{E}_{\text{bind}}^{\Xi} = -18 \text{ MeV}$$

We assume the  $\phi$ -meson universal mass scaling, but with vacuum coupling constants  $(H\phi)$ :  $\Phi_{\phi}(f) = 1 - f, \ \chi_{\phi}(f) = 1, \ \eta_{\phi}(f) = (1 - f)^2.$ 



#### Maximum masses with strangeness



#### Maximum mass constraint

- ▶ The largest precisely measured NS mass  $M[PSRJ0348 + 0432] = 2.01 \pm 0.04 M_{\odot}$  (Antoniadis et al., 2012).
- ▶ 4U 0614+091: QPO; RX J1856: isolated NS thermal radiation



#### Inclusion of $\Delta$ -isobars

#### Coupling constants

Coupling constants with vector mesons equal to nucleons' in the SU(6) symmetry assumption (quark counting):

$$g_{\omega\Delta} = g_{\omega N}, \quad g_{\rho\Delta} = g_{\rho N}, \quad g_{\phi\Delta} = 0$$

 $\Delta$  coupling with the scalar meson is deduced from the  $\Delta$  potential at the saturation density:

$$U_{\Delta}(n_0) = -\frac{x_{\sigma\Delta}m_N}{f_0} f_0 + x_{\omega\Delta}C_{\omega}^2(n_0/m_N^2).$$

The estimate from the experimental data is  $U_{\Delta}(n_0) \gtrsim -(30-50) \text{ MeV}$ . In this work we explore  $-50 \text{ MeV} > U_{\Delta} > -100 \text{ MeV}$  to estimate the maximum effect of  $\Delta$  on the NS properties.

#### ISM: MKVOR\* model

The fast decrease of the nucleon effective mass in MKVOR model in the ISM leads to early  $\Delta$  appearance and at some point  $m_N^* \to 0$ . Can be cured by introducing a sharp decrease into  $\eta_{\omega}(f)$  at  $f = f^*$ . All the results for BEM and for ISM (for  $n \leq 5 n_0$ ) remain unchanged.



For  $U_{\Delta} < -68$  MeV – multiple solutions for equilibrium  $n_{\Delta}$ 

 $\Rightarrow 1^{st}$  order phase transition!

#### ISM: $\Delta$ concentrations and the pressure

For  $U_{\Delta} < -65$  MeV the pressure curve lies within the constraint.



#### BEM: $\Delta$ and nucleons



 $\Delta$  appear at 1.7 –  $2.5\,n_0,$  but the maximum mass decrease is less than  $0.06\,M_{\odot}$ 

#### BEM: $H\Delta\phi$



Hyperons suppress  $\Delta$  concentrations

#### BEM: $U_{\Delta}$ dependence



#### BEM: Additional parameters variation



#### Conclusion

- We have developed a simple procedure of stiffening an arbitrary RMF EoS, which can be applied in scalar (NLWcut), vector (KVORcut) and isovector (MKVOR) sectors.
- The RMF model with scaled hadron masses and couplings is flexible enough to satisfy many astrophysical constraints, constraints from HIC and miscroscopic calculations and resolve the hyperon puzzle.
- ▶ In the ISM ∆s can appear by a I<sup>st</sup> order phase transition, if  $U_{\Delta}$  is sufficiently attractive
- $\blacktriangleright~\Delta$  isobars do not spoil the description of 2  $M_{\odot}$  neutron star.

#### Further development

- Meson ( $\rho^-$  done,  $\pi$ , K) condensation
- Calculation of the cooling
- Extension to the finite temperatures

III. String-flip model of deconfined quark matter: compact star perspective

K.A. Maslov

Based on

- N.-U. Bastian, M.A.R. Kaltenborn, D. Blaschke Phys.Rev. D96 (2017) no.5, 056024
- A. Ayriyan, N.-U. Bastian, D. Blaschke, H. Grigoryan, K.A.M., D.N. Voskresensky arXiv:1711.03926

### QCD phase diagram

Strongly interacting hot and/or dense matter

- Neutron stars
- Heavy-ion collisions
- Critical endpoint?



### QCD phase diagram (updated)

Rich phase structure

- Nucleonic liquid/gas phase transition (PT)
- Deconfinement to ideal
  (?) quark gas
- Chiral ( $\chi$ ) PT
- Color superconductivity
- Two conserving charges + e/m interaction: "pasta" structures



## Quark matter EoS

Large densities  $n \sim 100 n_0$ : perturbative QCD



Fraga, Kurkela, Vuorinen Astrophys.J. 781 (2014) no.2, L25 Lower densities: Non-perturbative methods & Modelling

- Build an effective theory (model), which represents main features of QCD:
  - Symmetries & symmetry breaking
  - Chiral condensates
  - Confinement

. . .

Effective relativistic models:

- Nambu Jona-Lasinio
- Current version of SFM

# Confinement potential approach

 Non-relativistic two-body confinement potential can be used to model hadronic states

 $V(\{\vec{r}_i\}) = \sum_{\{i < j\}} U^{\text{conf}}(\vec{r}_i - \vec{r}_j)$ 

E.g.  $U^{\text{conf}}(r) = \frac{m\omega^2 r^2}{2}$ : exact solution of 2- and 3-body problem!

Successful description of hadron mass spectra, magnetic properties, deuteron form-factor, etc.

- Diverges at large distances not suitable for many-body systems:
  - Hadrons are colorless, but residual forces aren't zero (like electric dipolar field):
    OCD van der Waals forces growing with distance ⇒ infinite energy for infinite matter
    Forces are spurious and need to be removed
    Better way to build many-body potential?

## String-flip model Lenz et al. Annals of Physics 170 (1986)

- Saturation of confinement forces
  - When colorless clusters are separated, confine only nearest neighbors
- Simple way to model it in N-body colorless system

Define  $V(\vec{r}_1, ..., \vec{r}_N; \text{string configuration}) = \sum_{\text{strings}} U^{\text{conf}}(\vec{r}_{ij})$ 

Then use the many-body potential  $V(\vec{r}_1, ..., \vec{r}_N) = \min_{\text{string conf.}} V(\vec{r}_1, ..., \vec{r}_N; \text{string configuration})$ 

E.g. for 4 particles



Strings are allowed to flip from one configuration to another during the evolution (time, density change, ...)

# String-flip model: estimates

This formulation allows for statistical treatment

Details and exact formulas in G. Röpke, D. Blaschke, H. Schulz Phys. Rev. D 34 (1986) 11

• Distribution of lengths of the strings ~ probability c(r) for a quark at the distance r to be the nearest neighbor to a quark at r = 0.

Solve  $n(r) = n(r)c(r) + \int_{r' < r} d^3 r' \rho_2(\vec{r} - \vec{r}')$ 

For a uniform distribution with particle number density  $n = N/\Omega$ (thermodynamic limit  $N \to \infty, \Omega \to \infty$ )  $c(r) = \lim_{N \to \infty} \left(1 - \frac{4\pi r^3}{3\Omega}\right)^N = \lim_{N \to \infty} \left(1 - \frac{4\pi r^3 n}{3N}\right)^N = e^{-\frac{4\pi r^3}{3}n}$ 

Interaction is screened for high densities with such a scale factor Three-body clusters: more complicated equations, but still mean squared distance between interacting clusters is  $\langle r_{12}^2 \rangle \sim n_B^{1/3}$ 

# Many-body contribution estimates: quark matter

Model is now applicable for describing hadrons

- What about quark matter? Consider no bound states (not true for real QCD at low energies)
- Energy per particle estimate:  $E_{\rm kin} \sim n_{B^+}^{\frac{1}{3}}$ ,  $E_{\rm int}^{\rm Hartree} \sim m\omega^2 \langle r_{12}^2 \rangle \sim m\omega^2 n_{B^+}^{\frac{2}{3}}$  (!)
- Energy per particle diverges for  $n_B \rightarrow 0$  effective interaction becomes less screened

# Effective model with SFM-type interaction

• Linear confinement potential is suggested by the lattice QCD data  $V^{\rm conf}(r) = \frac{\alpha}{r} + \sigma r + \mu + O(\frac{1}{r^3})$ 

Leads to the contribution to the energy per particle ~  $n^{-\frac{1}{3}}$ 

Phenomenologically can be reproduced via the Lagrangian  $\mathcal{L} = \mathcal{L}_{\text{free}} + \mathcal{L}_{\text{int}} = \bar{\psi}(i\partial_{\mu}\gamma^{\mu} - m)\psi - U(\bar{q}q,\bar{q}\gamma^{0}q)$ 

To use the quasiparticle picture, expand the potential the expectation values of the densities

$$\begin{split} \mathcal{I}(\bar{q}q,\bar{q}\gamma^{0}q) &\simeq U(n_{S},n_{V}) + (\bar{q}q-n_{S})\Sigma_{S} + (\bar{q}\gamma^{0}q-n_{V})\Sigma_{V} + \cdots, \text{ where} \\ n_{S} &= \langle \bar{q}q \rangle, n_{V} = \langle \bar{q}\gamma^{0}q \rangle \\ \Sigma_{S} &= \frac{\delta U(\bar{q}q,\bar{q}\gamma^{0}q)}{\delta(\bar{q}q)} \Big|_{\bar{q}q=n_{S}}, \Sigma_{V} = \frac{\delta U(\bar{q}q,\bar{q}\gamma^{0}q)}{\delta(\bar{q}\gamma^{0}q)} \Big|_{\bar{q}\gamma^{0}q=n_{V}} \end{split}$$

### Quasiparticles and interaction

Introduce the chemical potential into the partition function

$$Z = \int D\bar{q}Dq \exp\left\{\int_{0}^{\beta} d\tau \int d^{3}x \left[\mathcal{L} + \mu\bar{q}\gamma^{0}q\right]\right\}$$

The resulting equation of state is like for free gas but with effective chemical potential and masses (+ effective interaction energy)  $P(\mu) = P_{FG}(\mu^*, m^*) + \Theta(n_S, n_V),$ 

$$P_{FG} = \sum_{f=u,d} \int_{0}^{p_{F,f}} \frac{dp}{\pi^{2}} \frac{p^{4}}{E_{f}^{*}}, \qquad \Theta(n_{S}, n_{V}) = U(n_{S}, n_{V}) - \Sigma_{S} n_{S} - \Sigma_{V} n_{V},$$
$$E_{f}^{*} = \sqrt{p^{2} + m^{*2}}, \qquad p_{F,f} = \sqrt{\mu_{f}^{*2} - m^{*2}},$$
$$m^{*}(n_{S}, n_{V}) = m - \Sigma_{S}(n_{S}, n_{V}), \qquad \mu_{f}^{*}(n_{S}, n_{V}) = \mu_{f} + \Sigma_{V}(n_{S}, n_{V})$$

Ensures thermodynamic consistency

### Choice of the interaction

$$U(n_S, n_V) = D_0 \Phi(n_V) n^{2/3} + a n_V^2 + \frac{b n_V^4}{1 + c n_V^2}$$

Modeling of the confinement:

 $D_0 n_S^{1/3}$ 

- Scalar density corresponds to the chiral condensate  $(n_S \simeq n_V \text{ for } n \rightarrow 0)$
- Function  $\Phi(n_V) = \exp[-\alpha n_V^2]$  models the effects of quark excluded volume
- Ordinary vector repulsion term  $an_V^2$
- Higher-order repulsion  $bn_V^4$  + multiplier  $\frac{1}{1+cn_V^2}$  to restore causality

## SFM model

### Variation of the excluded volume parameter



# Quark-hadron mixed phase

### Pasta calculations

- Effects of the finite-size structures on the EoS
- 1 parameter surface tension at the hadron-quark interface  $\sigma_c$

uniform droplet rod slab tube bubble uniform



### "Mimicking" of the pasta

- Interpolating formula for P(μ) between hadron and quark phases
- No need of complex calculations
- 1 parameter: pressure excess  $\Delta P$



### What can we learn from NSs?

- Existence of high-mass twins?
- 1<sup>st</sup> order phase transition with a large energy jump ⇒ existence of third family of compact stars
- If the 2 stars with same mass and different radii are measured – CEP exists!
- Presence of pasta smoothes the phase transition ⇒ change of phase transition properties



### Effect of the mixed phase

A. Ayriyan et al. arXiv:1711.03926



## Conclusions

- We have constructed 2 effective relativistic models for hadron and quark matter
- Hadronic model allows for description of modern experimental data for T = 0 equation of state (including hyperons and  $\Delta$ s)
- Quark models can simulate confinement and can be adjusted to have twin configurations
- Pasta structures are important for MR-relation and existence of 3<sup>rd</sup> family; precision calculations needed

Prospective study:

- Inclusion of the isovector term into the SFM model
- Effects of the quark and hadron matter symmetry energy
- Effects of strangeness appearance

# Effect on the high-mass twin configuration

