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I. Introduction. Neutron stars



Normal stars
The Sun: 𝑀𝑀⊙ = 2 × 1033 𝑔𝑔 = 3.3 × 106 𝑀𝑀⊕

𝑅𝑅⊙~106𝑘𝑘𝑘𝑘, 𝑅𝑅⊕ = 6400 𝑘𝑘𝑘𝑘

Earth

⊙− Sun
⊕− Earth



Life of a star has the beginning and the end…





Massive star schematic
before the explosion



 White dwarf-like core cannot resist gravitation ⇒ instability (core-collapse)



Space telescope Chandra (1999)

Optical Radio X-rays

SN 1054
Crab nebula

Described by Chinese astronomers (1054)
Recognized also as a “guest star” in “Diary of the Clear Moon”
by Fujiwara no Teika



Period of 33 ms
Pulsar was discovered in1968 году



Compact objects
White dwarfs Neutron stars (NSs)

Sirius A

Sirius B

𝑀𝑀 ∼ 𝑀𝑀⊙, 𝑅𝑅 ∼ 𝑅𝑅⊕

𝑀𝑀 ∼ 𝑀𝑀⊙, 𝑅𝑅 ∼ 10 km






Estimate for the density

For the crab pulsar: �̅�𝜌 ≥ 1.6 × 1011 𝑔𝑔
𝑐𝑐𝑚𝑚3

For a period of 1 𝑘𝑘𝑚𝑚: �̅�𝜌 ≥ 1.4 × 1014 𝑔𝑔
𝑐𝑐𝑚𝑚3

Minimum density is about the nuclear density



Why is it interesting?

We can study matter at the 
conditions, unreachable on the 

Earth

Strong, 
gravitational,

weak and 
electromagnetic 

interactions
together!



Canonical possibilities for NS structure

this talk
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Introduction

I Description of the neutron star (NS) requires an equation of state
(EoS) of cold (T = 0) dense (n = 1–10n0, where n0–nuclear
saturation density) strongly interacting baryonic matter.
For a given EoS the NS mass and radius can be obtained for a given
central density.

I Any EoS is characterized by a maximum supported NS mass.
A viable EoS should pass the observed maximum NS mass
constraint M > 2.01± 0.04M� and many others.

I Any new degree of freedom softens the EoS and lowers the
maximum NS mass.

I There exist realistic phenomenological EoSs well tuned to describe
finite nuclei and low-density nuclear matter properties, but yielding a
low maximum NS mass

I We want to develop a method of stiffening of an EoS at high
densities without altering it at low densities.



Obtaining the EoS

QCD does not allow for quantitative results for the hadronic energy scale
There are many of EoSs, built in different ways:
Microscopic

I Based on many-body theories,
starting from the assumed
properties of 2- (or more) body
interactions in the vacuum

I Robust for low densities n, but
large uncertainties already for
n ' n0

I Many of them are non-relativistic
⇒ causality violation at large
densities (speed of sound vS > c)

Phenomenological approach

I Models with interaction
strengths adjusted to
reproduce the observables in
many-body systems.

I Relatively simple and
relativistic ⇒ assure causality

Phenomenological relativistic mean-field (RMF) models are successfully applied
to description of finite nuclei, heavy-ion collisions and neutron stars



Hyperon/∆ puzzle
With an increase of the
density already at n >∼ 2÷ 3n0 the conversion
n→ B +QBe

− becomes energetically favorable.
Chemical equilibrium condition:

µB = µN −QBµe

In standard realistic models the maximum
NS mass decreases below the observed values.

Problem can be resolved in relativistic mean-field
(RMF) models by taking into account a hadron mass and couplings
in-medium modifications [K. A. Maslov, E. E. Kolomeitsev and

D. N. Voskresensky, Phys. Lett. B 748, 369 (2015)]



Contradicting constraints

Constraint for the pressure, ob-
tained from analyses of transverse
and elliptic flows in heavy-ion col-
lisions
Passed by rather soft EoSs

The maximum NS mass constraint
favors stiff EoS

figures from [T. Klahn et al. PRC74 (2006)]



Traditional RMF models
H.-P. Dürr PR103 1956, J. D. Walecka 1974, J. Boguta & A. R. Bodmer 1977
Nonlinear Walecka (NLW) model
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Energy density
Nucleon effective mass m∗N = mN − gσσ. In terms of f ≡ gσσ

mN
:
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I Equation of motion for the scalar field:
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I Electrical neutrality condition: np = ne + nµ
I Beta-equilibrium conditions: µe = µn − µp, µi = ∂E

∂ni



Input parameters

Energy per particle expansion:

E = E0 +
K

18
ε2 − K

′

162
ε3 + ...+ β2

(
Esym +

L

3
ε+

Ksym

18
ε2...

)
,

ε = (n− n0)/n0, β = [(nn − np)/n0]n0

n0 = 0.16 fm−3, E0 = −16 MeV, K = 250 MeV,

Esym = 30 MeV, m∗N (n0)/mN = 0.8

Gives Mmax = 1.92 M�



Maximum mass for NLW model
Mmax contours for NLW model:

Additional terms ∼ ω4, ω2~ρ 2 for better description of the finite nuclei ⇒
maximum mass decrease
[FSUgold Todd-Rutel, Piekariewicz 2005]

Can we stiffen the EoS by playing with the scalar field potential?



Scalar potential modification
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NLWcut models
[K.A.M., E.E.K. & D.N.V. PRD92 (2015)]

U(f)→ Ũ(f) = U(f) + ∆U(f)

soft core: ∆U(f) = α ln[1 + exp(β(f − fs.core))],

hard core: ∆U(f) = α[δf/(fh.core − f)]2β

fs.core = f0 + cσ(1− f0)
m∗N (f) = mN (1− f)





Application to the FSUgold model

Can be applied to all RMF models



Generalized RMF model

E. E. Kolomeitsev and D. N. Voskresensky NPA 759 (2005) 373

I Model with the in-medium change of masses and coupling constants
of all hadrons.

I Common decrease of hadron masses:

m∗N
mN

' m∗σ
mσ
' m∗ω
mω
'
m∗ρ
mρ

I Sigma-field dependent masses and coupling constants

Model labelled KVOR was succesfully tested in Klaehn at al., PRC74
(2006) 035802.
Aim: Construct a better parametrisation (MKVOR) which satisfies new
constraints on the nuclear EoS and incorporate more baryon species



Generalized relativistic mean-field model
E. E. Kolomeitsev, D.N. Voskresensky, NPA 759 (2005)
K. A. M, E. E. K. and D. N. V., Phys. Lett. B 748 (2015),

E. E. K., K. A. M. and D. N. V., arXiv:1610.09746, to be published in NPA 961 (2017)
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Energy density functional
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⊕
Beta-equilibrium condition: µn = µB − qBµe ⇒ {nB(n)}.

Choice ηi = 1, ΦN (f) = 1− f reproduces the standard Walecka model

Scaling functions

In the homogeneous medium ηM = Φ2
M (f)/χ2

Mb(f) ,

ΦN (f) = Φm(f) = 1− f, universal scaling of hadron masses

ΦH(f) = ΦN (gσHχσH(σ)σ/mH) ≡ ΦN (xσHξσH(f)fmN/mH) ,

ξσH(f) = χσH(f)/χσN (f).
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KVORcut models

The same procedure can be applied to the scaling functions ηω(f):

ηω(f)KVOR(f)→ ηKVOR
ω (f) +

aω
2

[1 + tanh(bω(f − fcut,ω))]
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MKVOR model

The procedure can be applied to the isospin-asymmetric part (ηρ(f))
Does not change symmetric matter EoS, but stiffens the asymmetric part

Choice of the scaling functions



Density dependence of the mean scalar field

ΦN (f) = 1− f ⇒ effective mass decreases, then saturates at a constant
value



Comparison with density-dependent couplings
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Constraints from HIC
Constraint on the pressure

I from the analyses of transverse and elliptic flows
I from the analyses of kaon production

[W. G. Lynch et al. Prog. Part. Nucl. Phys. 62 (2009)]

I Cannot be passed by a typical EoS which yields a large maximum
NS mass



Gravitational vs baryon mass constraint
Pulsar J0737-3039B: (May be) electron capture in a O-Ne-Mg white
dwarf [P. Podsiadlowski et al. (2005)]

MG = 1.249± 0.001M�, MB = 1.366− 1.375M�
1, 2 – assuming no mass loss
dashed rectangle – assuming 1% mass loss

Lower np (lower L) are preferred



Inclusion of hyperons
Hyperons are included with the vector coupling constants from SU(6)
symmetry:

gωΛ = gωΣ = 2gωΞ =
2

3
gωN , gρΣ = 2gρΞ = 2gρN ,

2gφΛ = 2gφΣ = gφΞ =
2
√

2√
3
gωN .

Scalar coupling constants are deduced from hyperon binding energies at
n = n0:

EHbind(n0) =
C2
ω

m2
N

xωHn0 − xσH ξσH(f̄0) [mN −m∗N (n0)] ,

EΛ
bind = −28 MeV, EΣ

bind = +30 MeV, EΞ
bind = −18 MeV

We assume the φ-meson universal mass scaling, but with vacuum coupling
constants (Hφ):

Φφ(f) = 1− f, χφ(f) = 1, ηφ(f) = (1− f)2.



Hyperon concentrations



Maximum masses with strangeness
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Maximum mass constraint
I The largest precisely measured NS mass
M [PSRJ0348 + 0432] = 2.01± 0.04M� (Antoniadis et al., 2012).

I 4U 0614+091: QPO; RX J1856: isolated NS thermal radiation



Inclusion of ∆-isobars

Coupling constants
Coupling constants with vector mesons equal to nucleons’ in the SU(6)
symmetry assumption (quark counting):

gω∆ = gωN , gρ∆ = gρN , gφ∆ = 0

∆ coupling with the scalar meson is deduced from the ∆ potential at the
saturation density:

U∆(n0) = −xσ∆mN f0 + xω∆C
2
ω(n0/m

2
N ).

The estimate from the experimental data is U∆(n0) >∼ −(30—50) MeV.
In this work we explore −50 MeV > U∆ > −100 MeV to estimate the
maximum effect of ∆ on the NS properties.



ISM: MKVOR∗ model
The fast decrease of the nucleon effective mass in MKVOR model in the
ISM leads to early ∆ appearance and at some point m∗N → 0.
Can be cured by introducing a sharp decrease into ηω(f) at f = f∗. All
the results for BEM and for ISM (for n ≤ 5n0) remain unchanged.
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For U∆ < −68 MeV – multiple solutions for equilibrium n∆

⇒ 1st order phase transition!



ISM: ∆ concentrations and the pressure

For U∆ < −65 MeV the pressure curve lies within the constraint.

ISM

kaons in HIC
flow in HIC
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BEM: ∆ and nucleons
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∆ appear at 1.7 – 2.5n0, but the maximum mass decrease is less than
0.06M�



BEM: H∆φ

U∆ = -50 MeV
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Hyperons suppress ∆ concentrations



BEM: U∆ dependence

MKVOR*H∆ϕ
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The DU constraint is passed for:
U >∼ −88 MeV – ”strong” constraint MDU > 1.5M�
U >∼ −96 MeV – ”weak” constraint MDU > 1.35M�



BEM: Additional parameters variation
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Almost insensitive to xρ∆



Conclusion

I We have developed a simple procedure of stiffening an arbitrary
RMF EoS, which can be applied in scalar (NLWcut), vector
(KVORcut) and isovector (MKVOR) sectors.

I The RMF model with scaled hadron masses and couplings is flexible
enough to satisfy many astrophysical constraints, constraints from
HIC and miscroscopic calculations and resolve the hyperon puzzle.

I In the ISM ∆s can appear by a Ist order phase transition, if U∆ is
sufficiently attractive

I ∆ isobars do not spoil the description of 2 M� neutron star.

Further development

I Meson (ρ− - done, π, K) condensation

I Calculation of the cooling

I Extension to the finite temperatures



III. String-flip model of 
deconfined quark matter: 
compact star perspective
K.A. Maslov

Based on 
• N.-U. Bastian, M.A.R. Kaltenborn, D. Blaschke 

Phys.Rev. D96 (2017) no.5, 056024
• A. Ayriyan, N.-U. Bastian, D. Blaschke, H. Grigoryan, K.A.M.,
D.N. Voskresensky  arXiv:1711.03926 



QCD phase diagram

Strongly interacting hot 
and/or dense matter
• Neutron stars
• Heavy-ion collisions
• Critical endpoint?



QCD phase diagram 
(updated)

Rich phase structure
• Nucleonic liquid/gas 

phase transition (PT)
• Deconfinement to ideal 

(?) quark gas
• Chiral (𝜒𝜒) PT
• Color superconductivity
• Two conserving charges + 

e/m interaction: “pasta” 
structures

+ J-PARC HI



Quark matter EoS
Large densities 𝑛𝑛 ∼ 100 𝑛𝑛0: 
perturbative QCD

Lower densities: 
Non-perturbative 
methods & Modelling

 Build an effective theory (model), 
which represents main features of 
QCD:
 Symmetries & symmetry breaking
 Chiral condensates

 Confinement

Effective relativistic models:
 Nambu - Jona-Lasinio

 Current version of SFM
 …

Fraga, Kurkela, Vuorinen
Astrophys.J. 781 (2014) no.2, L25



Confinement potential approach

 Non-relativistic two-body confinement potential can be used to model 
hadronic states

V 𝑟𝑟𝑖𝑖 = ∑ 𝑖𝑖<𝑗𝑗 𝑈𝑈conf(𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗)

E.g. 𝑈𝑈conf 𝑟𝑟 = 𝑚𝑚𝜔𝜔2𝑟𝑟2

2
: exact solution of 2- and 3-body problem!

Successful description of hadron mass spectra, magnetic properties, deuteron 
form-factor, etc.

 Diverges at large distances - not suitable for many-body systems:
 Hadrons are colorless, but residual forces aren’t zero (like electric dipolar field): 

QCD van der Waals forces growing with distance ⇒ infinite energy for infinite matter

Forces are spurious and need to be removed

Better way to build many-body potential?



String-flip model
 Saturation of confinement forces 

 When colorless clusters are separated, confine only nearest neighbors

 Simple way to model it in N-body colorless system

Define 𝑉𝑉 𝑟𝑟1, … , 𝑟𝑟𝑁𝑁; string configuration = ∑strings𝑈𝑈conf(𝑟𝑟𝑖𝑖𝑗𝑗)

Then use the many-body potential 
𝑉𝑉 𝑟𝑟1, … , 𝑟𝑟𝑁𝑁 = min

string conf.
𝑉𝑉 𝑟𝑟1, … , 𝑟𝑟𝑁𝑁; string configuration

E.g. for 4 particles

Lenz et al. Annals of Physics 170 (1986)

𝑉𝑉 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, 𝑟𝑟4 = min

1
2

3 4

1
2

3 4

1
2

3 4

Strings are allowed to flip from one configuration to another during the evolution 
(time, density change, …)



String-flip model: estimates
 This formulation allows for statistical treatment

Details and exact formulas in G. Röpke, D. Blaschke, H. Schulz Phys. Rev. D 34 (1986) 11

 Distribution of lengths of the strings ∼ probability 𝑐𝑐 𝑟𝑟 for a quark at the 
distance 𝑟𝑟 to be the nearest neighbor to a quark at 𝑟𝑟 = 0. 

Solve 𝑛𝑛 𝑟𝑟 = 𝑛𝑛 𝑟𝑟 𝑐𝑐 𝑟𝑟 + ∫𝑟𝑟′<𝑟𝑟 𝑑𝑑
3 𝑟𝑟′𝜌𝜌2(𝑟𝑟 − 𝑟𝑟′)

For a uniform distribution with particle number density 𝑛𝑛 = 𝑁𝑁/Ω
(thermodynamic limit 𝑁𝑁 → ∞,Ω → ∞)

𝑐𝑐 𝑟𝑟 = lim
𝑁𝑁→∞

1 −
4𝜋𝜋𝑟𝑟3

3Ω

𝑁𝑁

= lim
𝑁𝑁→∞

1 −
4𝜋𝜋𝑟𝑟3𝑛𝑛

3N

𝑁𝑁

= 𝑒𝑒−
4𝜋𝜋𝑟𝑟3
3 𝑛𝑛

Interaction is screened for high densities with such a scale factor

Three-body clusters: more complicated equations, but still

mean squared distance between interacting clusters is 𝑟𝑟122 ∼ 𝑛𝑛𝐵𝐵
1/3



Many-body contribution estimates:
quark matter

Model is now applicable for describing hadrons

 What about quark matter?  Consider no bound states (not true for real QCD 
at low energies)

 Energy per particle estimate: 𝐸𝐸kin ∼ 𝑛𝑛𝐵𝐵
1
3 ,   𝐸𝐸intHartree ∼ 𝑚𝑚𝜔𝜔2 𝑟𝑟122 ∼ 𝑚𝑚𝜔𝜔2𝑛𝑛𝐵𝐵

−23 (!)

 Energy per particle diverges for 𝑛𝑛𝐵𝐵 → 0 – effective interaction becomes less 
screened



Effective model with SFM-type 
interaction

 Linear confinement potential is suggested by the lattice QCD data

𝑉𝑉conf 𝑟𝑟 =
𝛼𝛼
𝑟𝑟

+ 𝜎𝜎𝑟𝑟 + 𝜇𝜇 + 𝑂𝑂(
1
𝑟𝑟3)

Leads to the contribution to the energy per particle ∼ 𝑛𝑛−
1
3

 Phenomenologically can be reproduced via the Lagrangian
ℒ = ℒfree + ℒint = �𝜓𝜓 𝑖𝑖𝜕𝜕𝜇𝜇𝛾𝛾𝜇𝜇 − 𝑚𝑚 𝜓𝜓 − 𝑈𝑈 �𝑞𝑞𝑞𝑞, �𝑞𝑞𝛾𝛾0𝑞𝑞

To use the quasiparticle picture, expand the potential the expectation values of 
the densities 

𝑈𝑈 �𝑞𝑞𝑞𝑞, �𝑞𝑞𝛾𝛾0𝑞𝑞 ≃ 𝑈𝑈 𝑛𝑛𝑆𝑆,𝑛𝑛𝑉𝑉 + �𝑞𝑞𝑞𝑞 − 𝑛𝑛𝑆𝑆 Σ𝑆𝑆 + �𝑞𝑞𝛾𝛾0𝑞𝑞 − 𝑛𝑛𝑉𝑉 ΣV + ⋯, where
𝑛𝑛𝑆𝑆 = �𝑞𝑞𝑞𝑞 ,𝑛𝑛𝑉𝑉 = 〈�𝑞𝑞𝛾𝛾0𝑞𝑞〉

Σ𝑆𝑆 = �𝛿𝛿𝛿𝛿 �𝑞𝑞𝑞𝑞, �𝑞𝑞𝛾𝛾0𝑞𝑞
𝛿𝛿 �𝑞𝑞𝑞𝑞 �𝑞𝑞𝑞𝑞=𝑛𝑛𝑆𝑆

, Σ𝑉𝑉 = �𝛿𝛿𝛿𝛿 �𝑞𝑞𝑞𝑞, �𝑞𝑞𝛾𝛾0𝑞𝑞
𝛿𝛿 �𝑞𝑞𝛾𝛾0𝑞𝑞 �𝑞𝑞𝛾𝛾0𝑞𝑞=𝑛𝑛𝑉𝑉



Quasiparticles and interaction
 Introduce the chemical potential into the partition function

𝑍𝑍 = �𝐷𝐷�𝑞𝑞𝐷𝐷𝑞𝑞 exp �
0

𝛽𝛽

𝑑𝑑𝑑𝑑�𝑑𝑑3𝑥𝑥 [ℒ + 𝜇𝜇�𝑞𝑞𝛾𝛾0𝑞𝑞]

 The resulting equation of state is like for free gas but with effective chemical 
potential and masses (+ effective interaction energy)

𝑃𝑃 𝜇𝜇 = 𝑃𝑃𝐹𝐹𝐹𝐹 𝜇𝜇∗,𝑚𝑚∗ + Θ 𝑛𝑛𝑆𝑆,𝑛𝑛𝑉𝑉 ,

𝑃𝑃𝐹𝐹𝐹𝐹 = �
𝑓𝑓=𝑢𝑢,𝑑𝑑

�
0

𝑝𝑝𝐹𝐹,𝑓𝑓 𝑑𝑑𝑑𝑑
𝜋𝜋2

𝑑𝑑4

𝐸𝐸𝑓𝑓∗
, Θ 𝑛𝑛𝑆𝑆,𝑛𝑛𝑉𝑉 = 𝑈𝑈 𝑛𝑛𝑆𝑆,𝑛𝑛𝑉𝑉 − Σ𝑆𝑆𝑛𝑛𝑆𝑆 − Σ𝑉𝑉𝑛𝑛𝑉𝑉 ,

𝐸𝐸𝑓𝑓∗ = 𝑑𝑑2 + 𝑚𝑚∗2, 𝑑𝑑𝐹𝐹,𝑓𝑓 = 𝜇𝜇𝑓𝑓∗2 − 𝑚𝑚∗2,

𝑚𝑚∗(𝑛𝑛𝑆𝑆,𝑛𝑛𝑉𝑉) = 𝑚𝑚 − Σ𝑆𝑆 𝑛𝑛𝑆𝑆,𝑛𝑛𝑉𝑉 , 𝜇𝜇𝑓𝑓∗(𝑛𝑛𝑆𝑆,𝑛𝑛𝑉𝑉) = 𝜇𝜇𝑓𝑓 + Σ𝑉𝑉(𝑛𝑛𝑆𝑆, 𝑛𝑛𝑉𝑉)

Ensures thermodynamic consistency



Choice of the interaction

𝑈𝑈 𝑛𝑛𝑆𝑆,𝑛𝑛𝑉𝑉 = 𝐷𝐷0Φ 𝑛𝑛𝑉𝑉 𝑛𝑛2/3 + 𝑎𝑎𝑛𝑛𝑉𝑉2 +
𝑏𝑏𝑛𝑛𝑉𝑉4

1 + 𝑐𝑐𝑛𝑛𝑉𝑉2

 Modeling of the confinement: 
𝐷𝐷0𝑛𝑛𝑆𝑆

1/3

 Scalar density corresponds to the chiral condensate (𝑛𝑛𝑆𝑆 ≃ 𝑛𝑛𝑉𝑉 for 𝑛𝑛 → 0)

 Function Φ 𝑛𝑛𝑉𝑉 = exp −𝛼𝛼𝑛𝑛𝑉𝑉2 models the effects of quark excluded volume

 Ordinary vector repulsion term 𝑎𝑎𝑛𝑛𝑉𝑉2

 Higher-order repulsion 𝑏𝑏𝑛𝑛𝑉𝑉4 + multiplier 1
1+𝑐𝑐𝑛𝑛𝑉𝑉

2 to restore causality



SFM model

 Variation of the excluded volume parameter



Quark-hadron mixed phase
Pasta calculations

 Effects of the finite-size structures 
on the EoS

 1 parameter – surface tension at 
the hadron-quark interface 𝜎𝜎𝐶𝐶

“Mimicking” of the pasta
 Interpolating formula for 𝑃𝑃(𝜇𝜇)

between hadron and quark 
phases

 No need of complex calculations

 1 parameter: pressure excess ∆𝑃𝑃

N. Yasutake et.al. PRC89 (2014) A. Ayriyan et al. arXiv:1711.03926



What can we learn from NSs?
Existence of high-mass 
twins?

 1st order phase transition with a 
large energy jump ⇒ existence of 
third family of compact stars

 If the 2 stars with same mass and 
different radii are measured – CEP 
exists!

 Presence of pasta smoothes the 
phase transition ⇒ change of 
phase transition properties



Effect of the mixed phase
A. Ayriyan et al. arXiv:1711.03926



Conclusions
 We have constructed 2 effective 

relativistic models for hadron and 
quark matter

 Hadronic model allows for 
description of modern experimental 
data for 𝑇𝑇 = 0 equation of state 
(including hyperons and ∆s)

 Quark models can simulate 
confinement and can be adjusted 
to have twin configurations

 Pasta structures are important for 
𝑀𝑀𝑀𝑀-relation and existence of 3rd

family; precision calculations 
needed

Prospective study:

 Inclusion of the isovector term into 
the SFM model

 Effects of the quark and hadron 
matter symmetry energy 

 Effects of strangeness 
appearance



Effect on the high-mass twin 
configuration
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