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Review

The Physical Mechanism of Core-Collapse Supernovae that Neutrinos Drive

By Shoichi Yamada,∗1,∗2,† Hiroki Nagakura,∗3 Ryuichiro Akaho,∗1 Akira Harada,∗4

Shun Furusawa,∗5 Wakana Iwakami,∗1 Hirotada Okawa,∗6 Hideo Matsufuru∗7 and
Kohsuke Sumiyoshi∗8

Abstract: The current understanding of the mechanism of core-collapse supernovae (CC-
SNe), the death of massive stars and the main formation channel of compact objects such as
neutron stars and black holes, is reviewed for broad readers who may not be familiar with the
subject. We hence put an emphasis more on the physical aspects than on the summary of sim-
ulations although there is no doubt that the large-scale high-fidelity simulations have played the
most important roles in the progresses we have witnessed in the last few decades. There is no
doubt, either, that neutrinos are the single most important agent in producing one of the most
energetic events in the universe. The so-called neutrino-heating mechanism will be the focus in
this review and its crucial ingredients in micro- and macro-physics as well as in numerics will be
explained one by one. We will also try to elucidate what are the remaining issues.

Keywords: supernovae, core collapse, neutrinos, weak interaction, neutron stars, hadronic
equation of state, hydrodynamical instabilities, radiation transfer

1. Introduction

It has been almost a century since Baade and
Zwicky1) proposed the idea that the supernova ex-
plosion, an optical transient as bright as its host
galaxy, is associated with the gravitational collapse
of massive stars and is a channel to produce a neu-
tron star, a compact object consisting mostly of neu-
trons. More than half a century has passed even
from the first serious simulation that was performed
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by Colgate and White.2) In retrospect, it was indeed
foresighted that they assumed that the explosion is
instigated via the energy deposition by neutrinos. As
a matter of fact, the investigation of the core-collapse
supernova (CCSN) mechanism since then has been
an accumulation of improvements of this idea one
way or another in a sense although it has not been
a straight path, with promising ideas fizzled with a
disappointment repeatedly. The CCSN mechanism
is probably one of the longest-standing problems in
astrophysics.

Observationalists have presented unequivocal
evidence3) that the supernovae are indeed associated
with the gravitational collapse of massive stars and
the subsequent formation of compact objects such as
neutron stars and black holes except for those clas-
sified as type Ia1, which are originated from white
dwarfs in binary. The reason why we are so attracted

1 The supernovae are classified into several types ac-
cording to the features in their light curve and spectrum. All
of them but type Ia are driven by the gravitational collapse of
a core in massive stars. That is why they are called core-
collapse supernovae or collapse-driven supernovae. In this
article we focus on them and do not consider the type Ia
supernova.

1解説　重力崩壊型超新星の物理

©2023 日本物理学会

重力崩壊型超新星爆発は，宇宙で起こる
大質量星の爆発現象である．爆発を駆動し
ている星の中心付近では，高密度（核密度）
かつ高温（10 MeV以上）環境が実現され，
強い力・弱い力・電磁気力・重力という自
然界で働く 4つの基本的な力全てが爆発機
構に関わっており，理論物理学の観点から
も興味深い．爆発によって重元素の生成と
宇宙空間への放出が起こるため，宇宙の化
学組成を決める重要な天体現象である．ま
た，爆発後には中性子星やブラックホール
などの高密度天体を残すことから，宇宙で
起こる様々な他の高エネルギー天体現象と
も密接に関連する．このように，重力崩壊
型超新星爆発の研究は非常に学際的な分野
であり，素・核・宇宙・天文学などの幅広
い分野の研究者らによって，実験・観測・
理論・シミュレーションなどの様々なアプ
ローチにより研究が行われている．
超新星爆発を駆動している中心エンジン
は，複数の物理過程が非線形に絡まった系
である．その爆発機構は複雑で，理論宇宙
物理学の難題の一つとして位置づけられて
きた．しかし，ここ 10年ほどの間に，超
新星爆発の理論は著しく進展した．特に，
理論計算（数値シミュレーション）におい
ては，それまで爆発の再現に失敗していた
のに対し，近年ではこれに成功するモデル
が多く報告されている．こうした進展の一
つの理由は，計算機能力の向上と数値計算
手法の発展のおかげで，より正確に詳細な
物理過程を取り込んだ多次元ニュートリノ
輻射流体計算が実行可能になったことであ
る．例えば，第一原理計算に最も近いとさ
れる，ボルツマン方程式を直接解く多次元
輻射流体計算が「富岳」などのスパコンで

少数のモデルに対して実行されている一方，
近似的なニュートリノ輸送法を用いた多次
元計算がより多くのモデルに対して系統的
に行われている．また，ニュートリノと物
質との弱い相互作用の扱いについても精密
化が進み，例えば核子のweak currentにお
ける形状因子やストレンジネスの寄与，さ
らには多体効果なども，シミュレーション
では既に取り込まれている．
シミュレーションが，長時間かつ様々な

タイプの大質量星に対して系統的に行える
ようになり，観測量の定量的な推定が行え
るようになってきたことも，近年の重要な
進歩である．実際，過去の超新星理論モデ
ルとは違い，最終的な爆発エネルギーの値
や形成される中性子星の質量や半径などが
定量的に議論できるようになってきた．電
磁波・重力波・ニュートリノに関する理論
モデルの精度も格段に上がり，マルチメッ
センジャー天文学の発展にも貢献している．
このように超新星爆発の研究は，近年著

しく発展したが，それでも超新星爆発機構
が完全に解明されたわけではない．実際，
現在考慮されているニュートリノ反応の取
り扱いには不定性が大きく，それが爆発可
否に影響する可能性がある．また，ニュー
トリノ集団振動に代表される量子運動論的
な効果は，現在の最も進んだ超新星爆発計
算にも取り込まれておらず，現在の超新星
爆発の理論を一変させてしまうかもしれな
い．ニュートリノ反応計算の精度を上げ，
量子運動論的ニュートリノ輻射輸送計算に
基づいた超新星モデルの再構築が，今後
10年の超新星爆発の理論的研究の主要な
ターゲットになるだろう．

――用語解説――

大質量星：
恒星は核融合反応によって光
り輝いている星．大質量星は
太陽のおよそ 10倍以上の質
量を持つ恒星を指す．

中性子星：
主に中性子から構成されてい
る半径 10 kmほどの星．質量
は太陽よりも重く，現在のと
ころ，その 2倍程度の質量を
持つものの存在が明らかに
なっている．

ニュートリノ輻射流体シミュ
レーション：
ニュートリノと物質の相互作
用を考慮し，物質の流体力学
的運動と，ニュートリノ輸送
を同時に解く数値計算．以下
に，空間 3次元超新星爆発シ
ミュレーション結果の例を載
せる（岩上わかな・長倉洋樹
によって作成）．

マルチメッセンジャー天文
学：
ある天体から発せられる様々
なシグナル（電磁波，ニュー
トリノ・重力波・宇宙線な
ど）を同時期に観測し，これ
ら複数の観測量を協調させて，
天体現象の起源を探ること．

ニュートリノ集団振動：
ニュートリノの自己相互作用
によって駆動されるニュート
リノ振動（フレーバー混合）
現象．

重力崩壊型超新星の物理――研究の現状と今後の課題
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- Core-collapse supernova (CCSN)



Credit: Australian Astronomical Observatory (photograph by D. Malin)

- Observational Phenomenology

Progenitor mass: > 10 Msun

1 event /galaxy/ 100 yrs

Explosion energy: 10   erg

Nickel mass: 0.1Msun

Neutron star remnant

Neutrino emission: 10   erg

Long GRB – CCSN association
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　以上は、天体物理学、原子核物理学によって描かれ
たシナリオであり、これが正しいかを実証するために
は超新星爆発の観測が必要であった。次節で観測につ
いて述べる。

　多種多様な元素の源である超新星爆発だが、爆発の
際に解放されるエネルギーは非常に大きく1046ジュー
ル以上と見積もられる。これは太陽が生まれてから今
までに放出してきた全エネルギーの数百倍に相当し、
いかに莫大であるかがわかると思う。このエネルギー
のほとんど（99％程度）はニュートリノによって星
から運び出される。ニュートリノは物質との相互作用
が小さいために、高密度の星の内層を通り抜けられる
からである。超新星爆発のシナリオを検証する出来事
が1987年におこった。
　1987年2月23日にカミオカンデ実験と Irvine-

Michigan-Brookhaven (IMB) 実験は超新星 SN1987A

にともなうニュートリノバーストを捉えた。カミオ

カンデは、1983年に岐阜県神岡町の神岡鉱山の地下
1000mの場所に建設された装置であり、3000トンの
水タンクに948本の直径50cm光電子増倍管を取り付
けた装置であった。IMB実験はオハイオ州モートン塩
鉱の地下600mに作られた7000トンの実験装置であ
り、2048本の直径20cm光電子増倍管を使用した。こ
の超新星爆発は、我々から17万光年かなたにある大
マゼラン星雲で起きたものであり、光による観測を図
2に示す。
　図3はカミオカンデ実験、IMB実験（および後に
観測が報告されたBaksan実験）が捉えたニュート
リノ現象を示す。カミオカンデが11個、IMBが8個、
Baksan が5個のニュートリノ事象を観測した。横軸
の範囲を見てもらえばわかるように、ニュートリノが
放出されたのは十数秒間程度だった。つまり、中心核
が重力的に崩壊するのにかかる時間はたったの10秒
程度だったのである。一方、爆発による衝撃波で星の
外層が吹き飛ばされ、光が外へ出てくるまでには数時
間かかる。実際、SN1987Aにおいて光度の増加が観
測されたのは、ニュートリノ放出の時刻から3時間ほ

㪇 㪉 㪋 㪍 㪏 㪈㪇 㪈㪉
㪫㫀㫄㪼㩷㩿㫊㪼㪺㪀

㪜
㪥
㪜
㪩
㪞
㪰
㩷㩿
㪤
㪼㪭
㪀

㪈㪇

㪉㪇

㪊㪇

㪋㪇

㪇

㪢㪸㫄㫀㫆㫂㪸㫅㪻㪼
㪠㪤㪙
㪙㪸㫂㫊㪸㫅

図3　カミオカンデ、IMB、Baksan実験が捉えたSN1987Aからの
ニュートリノ信号

超新星爆発ニュートリノの観測
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1987A: Optical image
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Explosions occur across a wide progenitor mass

Nagakura et al. 2019

Core-collapse supernova explosion 2719

Figure 2. Average shock radii. Our models span a wide range in terms of
explosion delay times with shock revival occurring from ∼0.1 to ∼0.5 s
after bounce. Among the progenitors we consider, the 13, 14, and 15-M"
models fail to explode within the timeframe we simulate.

to explode, is captured by our study and will serve as an important
theoretical context going forward.

3 R ESULTS

3.1 Overview

At this stage in the theoretical development of progenitor models, it
should not be assumed that the mapping between mass and profile
is accurately known. There is still much churn in that complicated
field, and the effects of multidimensional stellar evolution (Couch
et al. 2015; Chatzopoulos et al. 2016; Jones et al. 2016; Müller et al.
2017, 2019; Jones et al. 2019; Yoshida et al. 2019) and binarity
(Müller et al. 2019), to name only two, have not yet been fully
assimilated. However, it is reasonable to suggest that the range of
possible structures is well-captured by the range depicted in Fig. 1.
It is in this spirit that we present our 3D explosion results and
suggest that the general range of outcomes has been approximately
corralled.

Fig. 1 depicts the mass density profiles of the suite of models upon
which we focus in this paper. The range of model slopes exterior
to ∼1.2 M" is quite wide and covers most of the model space
historically found in the literature. The lowest mass representative,
the 9-M" progenitor, boasts the steepest profile and the 25-M"
progenitor the shallowest, and any measure of average declivity
would be a monotonic function of ZAMS mass. However, as the
calculated compactness given in Table 1 demonstrates, the models
are not perfectly nested monotonically, and this is thought to reflect
real physical effects (Woosley & Heger 2007; Sukhbold et al.
2016, 2018). Moreover, due to significant mass-loss, the 60-M" of
Sukhbold et al. (2016) we employ in this paper resides in the middle
of the pack. For all the models, the compactness and shallowness
are inversely related to the central density, which helps determine
the time to bounce. It should be noticed that most of the models
have pronounced density cliffs at the silicon/oxygen interface, and
it has been shown that the accretion of such features can itself
jump a model into explosion (Burrows et al. 2018, 2019; Vartanyan
et al. 2018). However, not all progenitors share this feature, with
the 13-, 14-, and 15-M" models evincing some of the most modest
jumps of ∼1.2–1.4. As Fig. 2 of the post-bounce evolution of the
mean shock radius demonstrates, these are the models that do not
explode, and this is one reason. All our other models explode, with

Figure 3. Mass accretion rate at 500 km. All exploding models display
a sharp drop in the accretion rate corresponding to the infall of the Si/O
interface. All models, with the exception of the 9-M" progenitor, show an
overall positive net accretion rate on to the inner core even after explosion
sets in.

the post-bounce explosion times generally shorter for the lower-
mass progenitors and longer for the higher-mass progenitors. Most
of these exploding models have mass density jumps at this interface
of ∼2.0–2.3. Here, we define the time of explosion rather loosely
as the approximate time the mean shock radius experiences an
upward inflexion and is seen to continue its climb. In fact, the
19-, 20-, and 25-M" stars explode later than most, and the 9-
and 11-M" models the earliest, with the 10-M" model a bit
sluggish, perhaps due to the less pronounced silicon/oxygen ledge
and its (seemingly anomalous) shallower density profile. However,
the general separation of the early-exploding lower-mass branch
from the later exploding higher-mass branch seems to hold. The
delay of the higher-mass models seems connected with the larger
early mass accretion rate (Fig. 3) and higher associated ram
pressure. However, when these models do explode they do so
more energetically − the higher accretion rates are maintained to
translate into higher driving neutrino luminosities (Fig. 4, left) and
RMS neutrino energies (Fig. 4, right) absorbed on a consequently
thicker column of mass in the gain region, resulting in a higher
neutrino power deposition (Fig. 5). As we discuss in Section 3.2,
this results in a higher accumulation rate of net explosion energy,
and likely into higher asymptotic explosion energies. Nevertheless,
we still find that there are models, currently in the middle of the
progenitor continuum, that do not explode, but are bracketed in
compactness and other general parameters by those that do. This
reiterates the strong conclusion that low compactness is not a
necessary nor sufficient condition for explodability (Burrows et al.
2018).

Fig. 3 renders the evolution of the integrated mass accretion
rate (Ṁ , inward) through a radius of 500 km as a function of
time after bounce. Ṁ follows the corresponding mass density
profile (Fig. 1) closely, with the effects of the accretion of the
silicon/oxygen interface clearly shown. The post-bounce time of the
accretion of this interface is correlated for many models with the
onset time of explosion (modulo the accretion time from 500 km
to the shock). Ṁ for the 9-M" model drops precipitously, and
accretion effectively ceases around ∼0.2 s. Not unexpectedly, Ṁ

for the non-exploding models (13-, 14-, and 15-M") continues and
eventually (after ∼0.6 s) supersedes that of any exploding model.
However, apart from the 9-M" model, even for the exploding
models accretion continues for quite some time. This is due to

MNRAS 491, 2715–2735 (2020)
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Shock evolution for different progenitors

Burrows et al. 2020
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Neutrino-heating mechanism
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Neutrino Heating Mechanism:  
why it works
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Fig. 2. Schematic profiles of density, temperature, and mass
accretion rate between neutrinosphere at radius Rν and shock
at Rs some time after core bounce. Rg denotes the position of
the gain radius. At the shock, ρ and T jump discontinuously
from their preshock values ρp and Tp to the postshock val-
ues ρs and Ts, respectively. For r < Reos the density declines
steeply because the pressure is mainly caused by the nonrela-
tivistic Boltzmann gases of free neutrons and protons. Outside
of Reos the gas is radiation dominated and the density decrease
much flatter. In general, some of the gas falling into the shock
at rate Ṁ may stay in the region of neutrino heating while
another part (rate Ṁ ′) is advected into the nascent neutron
star. Note that Ṁ(r) is continuous at the shock in the rest
frame of the star only in case of a stalled shock front. Between
Rν and Reos the temperature can be considered roughly as
constant, whereas its negative gradient in the radiation domi-
nated region ensures hydrostatic equilibrium. There is net en-
ergy loss between Rν and Rg where T (r) exceeds the temper-
ature TH=C ∼ Tν(Rν/r)1/3, for which neutrino heating equals
cooling. Net energy deposition occurs between Rg and Rs

below the neutrinospheric value. If, instead, the temper-
ature would rise significantly above this latter value, the

matter would become optically thick to the energetic neu-
trinos produced in the hot gas (the opacity increases
roughly with the square of the neutrino energy) and the
neutrinosphere would move farther out to a lower density
(and thus typically a lower temperature).

Below a density between 109 g/cm3 and 1010 g/cm3,
relativistic electron-positron pairs and radiation deter-
mine the pressure, provided the temperature is suffi-
ciently high, typically around 1 MeV or more (see Woosley
et al. 1986). Exterior to the corresponding radius Reos,
where this transition from the baryon-dominated to the
radiation-dominated regime takes place, the temperature
must therefore decrease so that the negative temperature
gradient can yield the force which balances gravity.

The gain radius Rg is located at the radial position
where the temperature profile T (r) intersects with the
curve of temperature values, TH=C(r), for which heating
is equal to cooling by neutrinos, roughly given by

TH=C(r) ∼ Tν ·
(

Rν

r

)1
3

(1)

(Bethe & Wilson 1985). In Eq. (1) Tν means the temper-
ature at the radius Rν of the neutrinosphere. The shock
at Rs is taken to be infinitesimally thin compared to the
scales considered. Within the shock the density and tem-
perature therefore jump from their preshock values ρp and
Tp, to the postshock values ρs and Ts, respectively. A part
of the gas which falls into the shock with a mass accretion
rate Ṁ can stay in the region of neutrino heating, whereas
another part is advected with rate Ṁ ′ through the cooling
region to be added to the neutron star inside Rν .

The approach to the problem of shock revival taken
in this paper is considerably different from the discussion
of steady-state accretion or winds. Steady-state assump-
tions, for example, were also used by Burrows & Goshy
(1993) in their theoretical analysis of the explosion mecha-
nism. Having realized the fact, however, that the mass and
energy in the gain layer vary because of different rates of
mass flow through the boundaries and additional neutrino
heating, one is forced to the following conclusions. Firstly,
the discussion has to be time-dependent, which means that
the time derivatives in the continuity and energy equations
cannot be ignored. (Dropping the total time-derivative in
the momentum equation by assuming hydrostatic equi-
librium is less problematic and yields a reasonably good
approximation.) Secondly, the properties of the shock and
of the gain layer must be determined as solutions of an
initial value problem rather than from a steady-state pic-
ture. This reflects essential physics, namely that the shock
behavior is controlled by the cumulative effects of neutrino
heating and mass accumulation in the gain layer. For these
reasons conservation laws for the total mass and energy
in the gain layer will be derived by integrating the hy-
drodynamic equations of continuity and energy, including
the terms with time derivatives, over the volume of the
gain layer. The treatment will therefore retain the time-
dependence of the problem.

Janka 2001



Basic Equations

: Continuity Equation

: Energy Momentum Conservation

: Maxwell Equation

: Einstein Equation

: Boltzmann Equation 
(Neutrino Transfer)
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Abstract

We propose a novel numerical method for solving multi-dimensional, special relativistic Boltzmann
equations for neutrinos coupled to hydrodynamics equations. It is meant to be applied to simulations
of core-collapse supernovae. We handle special relativity in a non-conventional way, taking account of
all orders of v/c. Consistent treatment of advection and collision terms in the Boltzmann equations
is the source of difficulties, which we overcome by employing two different energy grids: Lagrangian
remapped and laboratory fixed grids. We conduct a series of basic tests and perform a one-dimensional
simulation of core-collapse, bounce and shock-stall for a 15M! progenitor model with a minimum but
essential set of microphysics. We demonstrate in the latter simulation that our new code is capable
of handling all phases in core-collapse supernova. For comparison, a non-relativistic simulation is also
conducted with the same code, and we show that they produce qualitatively wrong results in neutrino
transfer. Finally, we discuss a possible incorporation of general relativistic effects in our method.
Subject headings: supernovae: general—neutrinos—hydrodynamics

1. INTRODUCTION

dN = f(t,p,x)d3pd3x (1)
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Quantitative studies on the mechanism of core-collapse
supernovae (CCSNe) require detailed numerical simula-
tions. Except for low-mass (8 ∼ 10M!) progenitors,
elaborate one-dimensional (1D) simulations under spher-
ical symmetry have not reproduced the supernova ex-
plosion (Sumiyoshi et al. 2005; Liebendörfer et al. 2005;
Kitaura et al. 2006; Burrows et al. 2007). Last decade,
most of supernova modelers have focused on the multi-
dimensional (Multi-D) aspects of dynamics (see e.g., Ko-
take et al. (2012a); Janka (2012); Burrows (2013) for re-
cent review). In the post-bounce phase, instabilitities
drive post-shock accretion flows into turbulence, making
dynamics intrinsically multi-D. This may be crucial for
the supernova explosion, since the non-spherical turbu-
lent motions increase the dwell time of material in the
gain region, enhancing its absorption of hot neutrinos,
boosting the post shock pressure, and eventually pushing
the shock wave outwards (Takiwaki et al. 2012; Dolence
et al. 2013).
As a matter of fact, we have recently witnessed shock

revival in some of the currently most advanced simula-
tions (Burrows et al. 2006; Marek & Janka 2009; Suwa

et al. 2010; Lentz et al. 2012; Müller et al. 2012a,b; Taki-
waki et al. 2013), which has raised our hope that we will
finally unveil the mechanism of CCSNe. Unfortunately,
however, success or failure of the supernova explosion is
a delicate problem. In fact, the latest results of Multi-D
simulations by different groups are still at odds with one
another and no consensus has yet emerged concerning
which ingredient(s) is (are) essential for explosion. Al-
though various approaches, both phenomenological and
ab initio, are being undertaken at present, only better
simulations possibly with a Boltzmann-equation solver
that incorporate detailed microphysics and general rela-
tivity (GR) may give the conclusive answer.
Towards this goal, we are developing a numerical

code for neutrino transfer, which solves the Boltzmann
equations (Sumiyoshi & Yamada 2012). Our code is
based on the discrete-ordinate Sn method, which finite-
differences the Boltzmann equations, deploying multi-
angle and multi-energy bins in momentum space. Using
some snapshots from three-dimensional (3D) supernova
simulations, Sumiyoshi & Yamada (2012) demonstrated
the capabilities of this new code, which implements the
minimum set of neutrino reactions (see also Sumiyoshi et
al. (2014)). These simulations concerned neutrino trans-
fer in static backgrounds, however, and no back-reactions
to matter were taken into account.
The next step should be a coupling of this code with

a hydrodynamical code. This may not be so sim-
ple, though. Spherically symmetric 1D computations
may be easier, since they can adopt Lagrangian for-
mulations both for neutrino transfer and hydrodynam-
ics (Mezzacappa & Bruenn 1993; Mezzacappa et al.
2001; Liebendörfer et al. 2005; Sumiyoshi et al. 2005,
2007). Such formalisms as they are could not be applied
in Multi-D, however, and different formulations should
be developed for the Multi-D Boltzmann-Hydro simu-
lations, i.e. the simulations that solve the Boltzmann

: Lepton number Conservation
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Fig. 4 Sketch of the transport properties of electron-flavor neutrinos and antineutrinos (upper part)
compared to heavy-lepton neutrinos (lower part). In the supernova core ne and n̄e interact with
the stellar medium by charged-current absorption and emission reactions, which provide a major
contribution to their opacities and lead to a strong energetic coupling up to the location of their
neutrinospheres, outside of which both chemical equilibrium between neutrinos and stellar matter
(indicated by the black region) and diffusion cannot be maintained. In contrast, heavy-lepton neu-
trinos are energetically less tightly coupled to the stellar plasma, mainly by pair creation reactions
like nucleon bremsstrahlung, electron-position annihilation and nen̄e annihilation. The total opac-
ity, however, is determined mostly by neutrino-nucleon scatterings, whose small energy exchange
per scattering does not allow for an efficient energetic coupling. Therefore heavy-lepton neutrinos
fall out of thermal equilibrium at an energy sphere that is considerably deeper inside the nascent
neutron star than the transport sphere, where the transition from diffusion to free streaming sets in.
The blue band indicates the scattering atmosphere where the heavy-lepton neutrinos still collide
frequently with neutron and protons and lose some of their energy, but cannot reach equilibrium
with the background medium any longer. (Figure adapted from Raffelt, 2012, courtesy of Georg
Raffelt)

tion to free streaming at their corresponding energy-averaged neutrinosphere. This
sphere is also called transport sphere (sometimes also “scattering sphere”), whose
radius Rn ,t is determined by solving Eq. (9) with a suitable spectral average of the
total opacity ktot ⌘ kabs+kscatt, which includes all contributions from scattering and
absorption processes. Equilibration between neutrinos and the stellar background is
possible up to the so-called average energy sphere (also termed “number sphere”,
because outside of this location the number of neutrinos of a certain species is es-
sentially fixed). When scatterings increase the zig-zag path of neutrinos diffusing
through the medium and thus increase the probability of neutrinos to be absorbed,
the radius Rn ,e of the energy sphere is given by the condition

teff =
Z •

Rn ,e
dr rkeff =

2
3

(20)

Optically thick Optically thin

Figure by Janka 2017

Modeling of neutrino radiation field: kinetic treatment is necessary
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Fig. 2.— Left: Discretized momentum space of neutrinos in the laboratory frame. Spherical coordinates are employed. The radial
direction corresponds to neutrino energy and the azimuthal dimension is omitted. The grid in each dimension may not be uniform. Right:
The Lorentz-transformed mesh in the fluid-rest frame. The blue lines correspond to the radial lines whereas the black lines are transformed
from the concentric circles in the left panel. The brown dots show an isoenergy circle in the fluid-rest frame for comparison. Matter is
assumed to move upward in this figure.

ings.
After giving the SR Boltzmann equations in the next

section, we present our idea to overcome these difficul-
ties. We then demonstrate our successful handling of the
isoenergetic scatterings in the realistic supernova simu-
lations (see Section 7).

4. SR BOLTZMANN EQUATIONS FOR NEUTRINOS

We start with the covariant form of Boltzmann equa-
tion:

pµ ∂f

∂xµ
+

dpi

dτ

∂f

∂pi
=

(δf

δτ

)

col
, (1)

which is valid even in curved space-time. In the above
expression, f(= f(xµ, pi)) denotes the neutrino distri-
bution function in phase space; xµ and pµ are space-
time coordinates and four-momentum of neutrino, re-
spectively; since the latter satisfies the on-shell condition:
pµpµ = −m2

ν , in which mν is a neutrino mass, only three
of four components are independent and this is why only
spatial components appear in the second term on the
left hand side; τ stands for the affine parameter of neu-
trino trajectory. The left hand side of Eq. (1) expresses a
geodesic motion in the phase space, while the right hand
side denotes symbolically the so-called collision terms,
i.e., the terms that give the rate of changes in f due to
neutrino-matter interactions.

On the spherical coordinates in flat space-time, which
are the coordinates we employ for the laboratory frame in
our Eulerian approach, Eq. (1) is cast into the following

conservation form:
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where r, θ, φ denote the spatial variables; as three in-
dependent components of neutrino four-momentum, we
do not use its spacial components but adopt energy and
two angles, θν and φν (see Figure 3); µν is defined as
µν ≡ cos θν . In Eq. (2) and the rest of this paper, we as-
sume that neutrinos are massless, which is well justified
as long as neutrino oscillations are ignored.

The collision term in Eq. (2), which is expressed with
the laboratory time t, is related with the original collision
term in equation (1) as

(δf

δτ

)

col
= εlb

(δf

δt

)lb

col
, (3)

where εlb(≡ pt) denotes the neutrino energy measured in
the laboratory frame. Similarly, the collision term in the
fluid-rest frame can be expressed with the proper time of
each fluid element (t̃) as

(δf

δτ

)

col
= εfr

(δf

δt̃

)fr

col
, (4)

where εfr(≡ pt̃ ≡ −uµpµ) denotes the neutrino energy
in the fluid-rest frame. Here uµ is the four-velocity of
matter.
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Abstract

We propose a novel numerical method for solving multi-dimensional, special relativistic Boltzmann
equations for neutrinos coupled to hydrodynamics equations. It is meant to be applied to simulations
of core-collapse supernovae. We handle special relativity in a non-conventional way, taking account of
all orders of v/c. Consistent treatment of advection and collision terms in the Boltzmann equations
is the source of difficulties, which we overcome by employing two different energy grids: Lagrangian
remapped and laboratory fixed grids. We conduct a series of basic tests and perform a one-dimensional
simulation of core-collapse, bounce and shock-stall for a 15M! progenitor model with a minimum but
essential set of microphysics. We demonstrate in the latter simulation that our new code is capable
of handling all phases in core-collapse supernova. For comparison, a non-relativistic simulation is also
conducted with the same code, and we show that they produce qualitatively wrong results in neutrino
transfer. Finally, we discuss a possible incorporation of general relativistic effects in our method.
Subject headings: supernovae: general—neutrinos—hydrodynamics

1. INTRODUCTION

dN = f(t,p,x)d3pd3x (1)

Quantitative studies on the mechanism of core-collapse
supernovae (CCSNe) require detailed numerical simula-
tions. Except for low-mass (8 ∼ 10M!) progenitors,
elaborate one-dimensional (1D) simulations under spher-
ical symmetry have not reproduced the supernova ex-
plosion (Sumiyoshi et al. 2005; Liebendörfer et al. 2005;
Kitaura et al. 2006; Burrows et al. 2007). Last decade,
most of supernova modelers have focused on the multi-
dimensional (Multi-D) aspects of dynamics (see e.g., Ko-
take et al. (2012a); Janka (2012); Burrows (2013) for re-
cent review). In the post-bounce phase, instabilitities
drive post-shock accretion flows into turbulence, making
dynamics intrinsically multi-D. This may be crucial for
the supernova explosion, since the non-spherical turbu-
lent motions increase the dwell time of material in the
gain region, enhancing its absorption of hot neutrinos,
boosting the post shock pressure, and eventually pushing
the shock wave outwards (Takiwaki et al. 2012; Dolence
et al. 2013).
As a matter of fact, we have recently witnessed shock

revival in some of the currently most advanced simula-
tions (Burrows et al. 2006; Marek & Janka 2009; Suwa
et al. 2010; Lentz et al. 2012; Müller et al. 2012a,b; Taki-
waki et al. 2013), which has raised our hope that we will
finally unveil the mechanism of CCSNe. Unfortunately,
however, success or failure of the supernova explosion is
a delicate problem. In fact, the latest results of Multi-D
simulations by different groups are still at odds with one
another and no consensus has yet emerged concerning
which ingredient(s) is (are) essential for explosion. Al-
though various approaches, both phenomenological and
ab initio, are being undertaken at present, only better
simulations possibly with a Boltzmann-equation solver

that incorporate detailed microphysics and general rela-
tivity (GR) may give the conclusive answer.
Towards this goal, we are developing a numerical

code for neutrino transfer, which solves the Boltzmann
equations (Sumiyoshi & Yamada 2012). Our code is
based on the discrete-ordinate Sn method, which finite-
differences the Boltzmann equations, deploying multi-
angle and multi-energy bins in momentum space. Using
some snapshots from three-dimensional (3D) supernova
simulations, Sumiyoshi & Yamada (2012) demonstrated
the capabilities of this new code, which implements the
minimum set of neutrino reactions (see also Sumiyoshi et
al. (2014)). These simulations concerned neutrino trans-
fer in static backgrounds, however, and no back-reactions
to matter were taken into account.
The next step should be a coupling of this code with

a hydrodynamical code. This may not be so sim-
ple, though. Spherically symmetric 1D computations
may be easier, since they can adopt Lagrangian for-
mulations both for neutrino transfer and hydrodynam-
ics (Mezzacappa & Bruenn 1993; Mezzacappa et al.
2001; Liebendörfer et al. 2005; Sumiyoshi et al. 2005,
2007). Such formalisms as they are could not be applied
in Multi-D, however, and different formulations should
be developed for the Multi-D Boltzmann-Hydro simu-
lations, i.e. the simulations that solve the Boltzmann
equations and hydrodynamical equations simultaneously
in multi-dimensions.
Unlike the previous 1D codes, we adopt an Eulerian

picture in this paper. There are several reasons for this
choice. Among other things, we have in mind that the
Boltzmann solver will be coupled with a Multi-D Eule-
rian hydrodynamics and gravity solvers, which have been
well established and widely used in the high-energy as-
trophysical community. In addition, the Eulerian pic-
ture has a benefit to easily handle the left hand side
of Boltzmann equation, i.e., advection terms. In gen-

(Time evolution + Advection Term) (Collision Term)
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The conservative form is also derived for a local
orthonormal frame. Starting from Eq. (3) with the choice
of ûa ¼ eað0Þ and Eqs. (12), (14)–(16), we obtain
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or a practical form
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γαβγ ¼ −γβαγ is the Ricci rotation coefficients defined by
γαβγ ≔ eaðαÞe

b
ðγÞ∇bðeðβÞÞa. We also used
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Note that the partial derivative with respect to xα that
appears in the first term for Eqs. (20) and (21) has to be
taken fixing ν, θ̄, and φ̄ (not fixing pi). For Eq. (21), it is
trivially seen that N ¼

R
dN is the conserved quantity [see

Eqs. (4) and (9)].
It is soon found that ωð0Þ is related to ωðiÞ by

ωð0Þ ¼ −
X3

i¼1

ωðiÞlðiÞ: (24)

Since lðiÞ, ∂lðiÞ=∂θ̄, and ð∂lðiÞ=∂φ̄Þ= sin θ̄ constitute an
orthonormal set of the unit vector in the local three-
momentum space of subscript ðiÞ, we find that ωð0Þ,
ωðθ̄Þ, and ωðφ̄Þ are the independent components of ωðiÞ.
½ωð0Þ;ωðθ̄Þ;ωðφ̄Þ& are independent projection components of
the ωðiÞ vector, satisfying

ω2
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1
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ω2
ðφ̄Þ ¼
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i¼1

ω2
ðiÞ: (25)

We note that ωð0Þ and ωðjÞ are composed of nine basis
functions of Ylmðθ̄; φ̄Þ with 0 ≤ l ≤ 2 and 0 ≤ jmj ≤ 2,
where Ylm is the spherical harmonics function. Also,
ωðθ̄Þ sin θ and ωðφ̄Þ are composed of fourteen basis functions
of Ylmðθ̄; φ̄Þ with 0 ≤ l ≤ 3 and 0 ≤ jmj ≤ 2. Thus, in
general, ½ωð0Þ;ωðθ̄Þ;ωðφ̄Þ& are written as functions of these
basis functions, although with a good choice of the tetrad,
they can be written in a simple form in particular for
spacetime of a special symmetry (see below).

C. Explicit form in black hole spacetime

1. Schwarzschild black hole

As an illustration, we explicitly describe the con-
servative form of Boltzmann’s equation in black-hole
spacetime. As the simplest case, first, we choose the
Schwarzschild background for which the line element is
written as

ds2 ¼ −
#
1 −

2M
r

$
dt2 þ

#
1 −

2M
r

$−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ; (26)
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Conservative form of GR Boltzmann eq.

Shibata, Nagakura, Sekiguchi, and Yamada (2014)
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Various Approximations for Multi-D Neutrino Transfer

Ray-by-Ray Approach (UTK-Oak Ridge, MPA)
The Astrophysical Journal, 747:73 (12pp), 2012 March 1 Lentz et al.
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2

Figure 9. Illustration of the “ray-by-ray” transport approximation. The circle
represents the neutrinosphere and the solid lines represent two independent
“rays” in the RbR approximation. The dashed lines are tangents to the
neutrinosphere and indicate the regions that contribute to the neutrino field
at points 1 and 2. The “blob” on the neutrinosphere below point 1 is a “hot spot”
where the temperature is higher than the rest of the neutrinosphere. For point 1,
the RbR method will compute the neutrino field as if the entire neutrinosphere
has the properties of the hot spot, overestimating the neutrino flux and heating.
For point 2, the RbR misses the contribution of the hot spot by assuming that
the neutrinosphere properties are only those of the cooler region directly below
it, underestimating the neutrino flux and heating.

reduce computational costs and simplify code development.
CHIMERA, Vertex, and Zeus+IDSA break the non-radial
(lateral, or angular) spatial coupling through the “ray-by-ray”
(RbR) approximation, and Vulcan/2D breaks the coupling
between energy groups and neutrino species.

In the RbR approximation, the neutrino transport is computed
as a number of independent, spherically symmetric problems,
referred to as “rays,” which allows for the reuse of existing
1D neutrino transport codes. (See Figure 9 for a schematic
illustration of the RbR approximation.) RbR methods exhibit
good parallel scaling for large numbers of independent radial
rays, which can be evolved without communication while
computing the neutrino transport. Typically, in RbR codes,
the neutrinos in opaque regions are advected laterally with the
fluid motions and contribute to the pressure. The independence
of the rays artificially sharpens the lateral variation in the
neutrino luminosity and heating above the proto-NS, which
results in some regions of the hot mantle being overheated
and others underheated. The transport studies of Ott et al.
(2008) using Vulcan/2D in multi-angle mode showed that full
multidimensional FLD underestimates the lateral variation in
the neutrino radiation field, whereas RbR codes are expected to
overestimate the lateral variation. Buras et al. (2006) concluded
from analysis of their RbR models that the transient lateral
variations in neutrino flux and heating were not very likely
to have dynamical consequences for the evolution of their
models. The impact of the RbR approximation on the simulation
outcomes is not precisely known, and proper testing will have to
wait until one of the RbR codes is upgraded to include full lateral
transport, as no extant code is currently capable of computing in
RbR and non-RbR modes and there are significant differences
between extant RbR and non-RbR codes in other respects.

The authors of Vulcan/2D have chosen to break the en-
ergy and species coupling rather than the lateral spatial cou-
pling. Vulcan/2D implements computational parallelism by
solving for 2D-spatially-coupled neutrino transport for each
energy–species group independently, with communication only

after transport to integrate neutrino heating/cooling from all
energy groups. The consequence of this design choice is that
Vulcan/2D cannot easily include either NIS-driven coupling of
energy groups or the coupling of energy groups through ob-
server corrections, nor can it utilize more parallel processing
elements than it has energy–species groups.

5.2. Opacity Approximations

CHIMERA and Vertex include all of the FullOp opacities
plus additional corrections for weak magnetism and ion–ion
correlations. Vertex also includes the neutrino-pair flavor-
conversion process (Buras et al. 2003). V2D uses the Bruenn
(1985) opacities, which are similar to ReducOp, but do include
the energy down-scattering from NES. Vulcan/2D omits all of
the NIS scatterings in favor of their IS counterparts, as does the
Zeus+IDSA code because energy-coupled scattering has not
yet been developed for the IDSA transport method. Vulcan/2D,
V2D, and Zeus+IDSA use an IPA for EC on nuclei, which cuts
off electron capture by nuclei when the mean neutron number
N ! 40, and overestimates it above the cutoff, while CHIMERA
and Vertex use the more accurate LMSH EC table.

Some multidimensional supernova codes (Vertex,
Vulcan/2D) use a single species, νx = {νµτ , ν̄µτ }, to represent
all of the heavy-lepton flavor neutrinos, while the Zeus+IDSA
code omits them completely.

5.3. Observer Corrections

CHIMERA, V2D, and Vertex include the observer correc-
tions in the neutrino transport. In the Zeus+IDSA code, adia-
batic compression is properly handled for the trapped neutrinos,
and O(v/c) observer corrections are included for free-streaming
neutrinos. These codes use neutrino transport based on
Equation (3), its equivalent toO(v/c), or its GR equivalent. Only
Vulcan/2D neglects the observer corrections entirely, by solv-
ing the neutrino transport based on Equation (7). (The transport
equation quoted in Livne et al. (2004) also omits the µ0v ∂f/∂t-
term, which is typically considered of O(v2/c2) and dropped
from most O(v/c) transport solutions.)

6. CONCLUSIONS

We have examined the consequences of removing (1) GR
effects, (2) non-isoenergetic scattering and detailed nuclear
EC opacities, and (3) observer corrections from spherically
symmetric models of core-collapse supernovae. We have found
that all of these changes, individually and especially when
taken together, affect the progress of stellar collapse and the
post-bounce evolution of the shock and core thermodynamic
properties in significant ways, in contrast to the assessments
made by Burrows et al. (2006, 2007) and Nordhaus et al. (2010).
We have computed variations in the shock radius, neutrino
luminosities, and neutrino rms energies as large as 60 km,
35 Bethe s−1, and 10 MeV, respectively, across the four models
considered here.

Omission of GR results in a less compact core and an unreal-
istically more favorable shock progression after bounce. Elim-
inating non-isoenergetic scatterings and simplifying electron
capture on nuclei drastically reduces the core deleptonization
and expands the homologous core at bounce. Omission of the
observer corrections dramatically alters core deleptonization,
the shock position, and neutrino luminosities after bounce, in
part resulting from a complete breakdown of lepton number
conservation.
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Isotropic Diffusion Source Approximation (IDSA) 
(Basel, Japan)

Neutrino-transport is essentially same as spherical symmetry.

Schematic picture of
ray-by-ray approach
(Lentz et al. 2012)

Neutrinos are decomposed into trapped and streaming parts. 

Two reduced equations are coupled by each source term, which is 
approximately described under diffusion treatment. 
(See e.g., Berninger et al. 2013)

Moment method
(UTK-Oak Ridge, Princeton, Michigan)

3

constant. kb denotes the Boltzmann constant.

§2. Moment formalism of Thorne

First, we review the Thorne’s moment formalism.2) In the first step, he defines
an unprojected moment of massless particles associated with a moving medium as

M α1α2···αk
(ν) (xβ) =

∫

f(p′α, xβ)δ(ν − ν ′)

ν ′k−2
p′α1p′α2 · · · p′αkdV ′

p , (2.1)

where f is the distribution function of the relevant radiation, ν ′ = −uµp′µ the fre-
quency of the radiation in the rest-frame of the medium (i.e, in the rest-frame of
the fiducial observer) with uµ being medium’s four velocity, pµ the four-momentum
of the radiation, and dVp the invariant integration element on the light cone. k,
here, is positive integer, 1, 2, · · · . As pointed out by Thorne,2) the choice of the
fiducial observer is crucial when deriving a good truncated formalism from his mo-
ment formalism. In the following, the fluid, coupled with the radiation, is chosen
as the medium.2), 9), 10) Namely, the frequency, ν, in M α1α2···αk

(ν) always denote the

frequency measured in the rest-frame of the fluid throughout this paper. This choice
is crucially helpful when computing the source terms of the radiation equations.

We note that it is possible to choose any fiducial frame in the moment formalism.
However, we have to keep in mind that for a truncated moment formalism in a closed
form, it is necessary to assume a closure relation which is determined by a physically
reasonable assumption. In the dense medium, radiation is strongly coupled to the
matter field. This implies that at the zeroth order, the radiation is in equilibrium
with the medium, and radiation flow (measured by an observer comoving with the
matter) is a small correction. To reproduce this feature in the closure relation, the
best method seems to choose the fluid rest frame as the fiducial frame.

We also note the following: As a result of our choice of the fiducial frame, the
argument frequency in the distribution function is always the frequency measured in
the fluid rest frame. By contrast, the argument variable should be in general the
frequency in the laboratory frame (although any frame can be taken), if one fully
solves the Boltzmann equation that the distribution function obeys.

The Boltzmann equation is written in the form2)

dxα

dτ

∂f

∂xα
+

dpi

dτ

∂f

∂pi
= (−pαuα)S(p

µ, xµ, f), (2.2)

where S denotes a source term and τ the affine parameter of a trajectory of radiation
particles. In any orthonormal frame, the invariant integration element is given by9)

dVp =
dp̂1dp̂2dp̂3

p̂0
, (2.3)

where p̂α is the four-momentum of the radiation in the local orthonormal frame. In
the local rest frame of an observer comoving with the fluid,

dVp = νdνdΩ, (2.4)

Neutrino angular direction is integrated. The so-called “closure relation” is imposed 
in the higher moment.

Shibata et al. 2011

Multi-Group Flux-Limited-Diffusion (MGFLD)
(UTK-Oak Ridge)
Neutrino Transports are treated as the Energy-Dependent Diffusion Equation.

See Mezzacappa et al. 2020



Numerical methods for Boltzmann solver

Boltzmann equation in flat space time

where ðt; r; θ;φÞ are usual Schwarzschild coordinates. In
this case, one of the natural choices of the tetrad compo-
nents is

eað0Þ ¼
!
1 −

2M
r

"−1=2! ∂
∂t
"

a
;

eað1Þ ¼
!
1 −

2M
r

"
1=2

! ∂
∂r

"
a
;

eað2Þ ¼
1

r

! ∂
∂θ

"
a
;

eað3Þ ¼
1

r sin θ

! ∂
∂φ

"
a
; (27)

and thus, dVx ¼ ð1 − 2M=rÞ−1=2r2 sin θdrdθdφ. This
choice is valid only for r > 2M because for r ≤ 2M,
eað0Þ is not timelike and eað1Þ is not spacelike, respectively.
The nonzero components of γαβγ for this tetrad are

γ122 ¼ −γ212 ¼ γ133 ¼ −γ313 ¼ −
1

r

!
1 −

2M
r

"
1=2

;

γ233 ¼ −γ323 ¼ −
cot θ
r

;

γ100 ¼ −γ010 ¼
M
r2

!
1 −

2M
r

"−1=2
: (28)

Hence,

ωð0Þ ¼
M
r2

!
1 −

2M
r

"−1=2
cos θ̄; (29)

ωð1Þ ¼ −M
r2

!
1 − 2M

r

"−1=2
þ 1

r

!
1 − 2M

r

"
1=2

sin2θ̄; (30)

ωð2Þ ¼ −
1

r

!
1 −

2M
r

"
1=2

sin θ̄ cos θ̄ cos φ̄

þ cot θ
r

sin2θ̄sin2φ̄; (31)

ωð3Þ ¼ −
1

r

!
1 −

2M
r

"
1=2

sin θ̄ cos θ̄ sin φ̄

−
cot θ
r

sin2θ̄ sin φ̄ cos φ̄; (32)

and

ωðθ̄Þ ¼
3M − r

r2

!
1 −

2M
r

"−1=2
sin θ̄; (33)

ωðφ̄Þ ¼ −
cot θ
r

sin3θ̄ sin φ̄: (34)

We note that ωð0Þ, ωðθ̄Þ, and ωðφ̄Þ are composed only of
one basis function of ðθ̄; φ̄Þ, respectively, although they
may have more functions in general. Hence, the equation
for f in the Schwarzschild background is written in a quite
simple form:

!
1 −

2M
r

"−1=2 ∂f
∂t þ

1

r2
∂
∂r

#
f cos θ̄r2

!
1 −

2M
r

"
1=2

$
þ 1

r sin θ
∂
∂θ ðf sin θ sin θ̄ cos φ̄Þ

þ 1

r sin θ
∂
∂φ ðf sin θ̄ sin φ̄Þ − 1

ν2
∂
∂ν

#
fν3 cos θ̄

M
r2

!
1 −

2M
r

"−1=2$

−
1

sin θ̄
∂
∂θ̄

#
fsin2θ̄

r − 3M
r2

!
1 −

2M
r

"−1=2$

− ∂
∂φ̄

!
f
cot θ
r

sin θ̄ sin φ̄
"

¼ Srad: (35)

It is found that the transport term associated with ν in
Eq. (35) is present only for the curved spacetime; hence,
this term is related to the gravitational redshift (for
cos θ̄ > 0) and blueshift (for cos θ̄ < 0). It is also interest-
ing to point out that the transport term associated with θ̄
changes the sign at the so-called photon sphere r ¼ 3M: for
r > 3M, the direction of outgoing rays tends to converge
toward θ̄ → 0 as usual in the flat spacetime, while for
r < 3M, rays are dragged by the gravity of the black hole.
By setting M ¼ 0, we can also obtain Boltzmann’s

equation in the flat spacetime (e.g. [8]):

∂f
∂t þ

1

r2
∂
∂r ðf cos θ̄r

2Þ þ 1

r sin θ
∂
∂θ ðf sin θ sin θ̄ cos φ̄Þ

þ 1

r sin θ
∂
∂φ ðf sin θ̄ sin φ̄Þ − 1

r
1

sin θ̄
∂
∂θ̄ ðfsin

2θ̄Þ

−
∂
∂φ̄

!
f
cot θ
r

sin θ̄ sin φ̄
"

¼ Srad: (36)

This equation together with Eq. (35) shows that for ωð0Þ,
ωðθ̄Þ, and ωðφ̄Þ, cos θ̄, sin θ̄, and sin3θ̄ sin φ̄ are the primary
basis functions, respectively.
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Abstract

We propose a novel numerical method for solving multi-dimensional, special relativistic Boltzmann
equations for neutrinos coupled to hydrodynamics equations. It is meant to be applied to simulations
of core-collapse supernovae. We handle special relativity in a non-conventional way, taking account of
all orders of v/c. Consistent treatment of advection and collision terms in the Boltzmann equations
is the source of difficulties, which we overcome by employing two different energy grids: Lagrangian
remapped and laboratory fixed grids. We conduct a series of basic tests and perform a one-dimensional
simulation of core-collapse, bounce and shock-stall for a 15M! progenitor model with a minimum but
essential set of microphysics. We demonstrate in the latter simulation that our new code is capable
of handling all phases in core-collapse supernova. For comparison, a non-relativistic simulation is also
conducted with the same code, and we show that they produce qualitatively wrong results in neutrino
transfer. Finally, we discuss a possible incorporation of general relativistic effects in our method.
Subject headings: supernovae: general—neutrinos—hydrodynamics

1. INTRODUCTION

Quantitative studies on the mechanism of core-collapse
supernovae (CCSNe) require detailed numerical simula-
tions. Except for low-mass (8 ∼ 10M!) progenitors,
elaborate one-dimensional (1D) simulations under spher-
ical symmetry have not reproduced the supernova ex-
plosion (Sumiyoshi et al. 2005; Liebendörfer et al. 2005;
Kitaura et al. 2006; Burrows et al. 2007). Last decade,
most of supernova modelers have focused on the multi-
dimensional (Multi-D) aspects of dynamics (see e.g., Ko-
take et al. (2012a); Janka (2012); Burrows (2013) for re-
cent review). In the post-bounce phase, instabilitities
drive post-shock accretion flows into turbulence, making
dynamics intrinsically multi-D. This may be crucial for
the supernova explosion, since the non-spherical turbu-
lent motions increase the dwell time of material in the
gain region, enhancing its absorption of hot neutrinos,
boosting the post shock pressure, and eventually pushing
the shock wave outwards (Takiwaki et al. 2012; Dolence
et al. 2013).
f = f(t, r, θ,φ, ν, θ̄, φ̄)
As a matter of fact, we have recently witnessed shock

revival in some of the currently most advanced simula-
tions (Burrows et al. 2006; Marek & Janka 2009; Suwa
et al. 2010; Lentz et al. 2012; Müller et al. 2012a,b; Taki-
waki et al. 2013), which has raised our hope that we will
finally unveil the mechanism of CCSNe. Unfortunately,
however, success or failure of the supernova explosion is
a delicate problem. In fact, the latest results of Multi-D
simulations by different groups are still at odds with one
another and no consensus has yet emerged concerning
which ingredient(s) is (are) essential for explosion. Al-
though various approaches, both phenomenological and
ab initio, are being undertaken at present, only better
simulations possibly with a Boltzmann-equation solver
that incorporate detailed microphysics and general rela-

tivity (GR) may give the conclusive answer.
Towards this goal, we are developing a numerical

code for neutrino transfer, which solves the Boltzmann
equations (Sumiyoshi & Yamada 2012). Our code is
based on the discrete-ordinate Sn method, which finite-
differences the Boltzmann equations, deploying multi-
angle and multi-energy bins in momentum space. Using
some snapshots from three-dimensional (3D) supernova
simulations, Sumiyoshi & Yamada (2012) demonstrated
the capabilities of this new code, which implements the
minimum set of neutrino reactions (see also Sumiyoshi et
al. (2014)). These simulations concerned neutrino trans-
fer in static backgrounds, however, and no back-reactions
to matter were taken into account.
The next step should be a coupling of this code with

a hydrodynamical code. This may not be so sim-
ple, though. Spherically symmetric 1D computations
may be easier, since they can adopt Lagrangian for-
mulations both for neutrino transfer and hydrodynam-
ics (Mezzacappa & Bruenn 1993; Mezzacappa et al.
2001; Liebendörfer et al. 2005; Sumiyoshi et al. 2005,
2007). Such formalisms as they are could not be applied
in Multi-D, however, and different formulations should
be developed for the Multi-D Boltzmann-Hydro simu-
lations, i.e. the simulations that solve the Boltzmann
equations and hydrodynamical equations simultaneously
in multi-dimensions.
Unlike the previous 1D codes, we adopt an Eulerian

picture in this paper. There are several reasons for this
choice. Among other things, we have in mind that the
Boltzmann solver will be coupled with a Multi-D Eule-
rian hydrodynamics and gravity solvers, which have been
well established and widely used in the high-energy as-
trophysical community. In addition, the Eulerian pic-
ture has a benefit to easily handle the left hand side
of Boltzmann equation, i.e., advection terms. In gen-
eral, Lagrangian formulations need to treat derivatives

1. t: time
2. r: radius
3. θ: zenith angle (real)
4. φ: azimuthal angle (real)
5. ν: energy
6. θ: zenith angle (momentum)
7. φ: azimuthal angle (momentum)

Distribution function (7D)
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shock stall for a realistic progenitor model of 15M! with
the minimal set of microphysics. We have paid partic-
ular attention to the collapsing phase, in which matter
velocities reach maximum and our code faces the great-
est challenge. We have found that the neutrino-dragging
due to matter motions, which is crucially important in
neutrino trapping, is correctly captured in the SR sim-
ulation but not in the NR one. We have also observed
only in the SR computation that the lepton fraction as
a function of the Lagrangian mass coordinates does not
change in time in the optically thick region. These re-
sults clearly indicate that the adequate treatment of SR
effects is critically important to obtain the lepton frac-
tion correctly.
The simulation was continued until the shock wave

generated at bounce is stalled in the core. We have found
no problem in the later phase, either, and we are now con-
fident that our new method is applicable to the realistic
simulation of CCSNe. In fact, we have already started
such simulations in 2D and their results will be reported
together with further tests in multi-D in our forthcom-
ing paper. It is finally stressed that our method could
be applied to other more relativistic phenomena such as
photon transfer in AGN or GRBs, since SR effects are

taken into account to all orders of v/c in our Boltzmann
code. These possibilities will be studied in the future.
At the very end of the paper we comment on the ex-

tension of our formulation to GR Boltzmann-Hydro sim-
ulations. We have recently published a paper on the
conservative form of GR Boltzmann equation (Shibata
et al. 2014), which, in flat space time, would reduce to
the one used in the current study. It turns out that
our Lagrangian remapping method can be extended to
this form of GR Boltzmann equation with some modifi-
cations. As shown in Eq. (21) of that paper, GR modifies
only the advection terms with the collision terms being
essentially unchanged from the SR case. In the GR case,
the choice of LFG is non-trivial. We may be able to use a
local tetrad with a time-like unit vector, na, orthogonal
to the spatial hypersurface of t =const. Then one impor-
tant difference from the SR case is that na depends on
space and time, which implies that the GR Boltzmann
equation has energy-derivative terms on the left hand
side even in the laboratory frame, which is nothing but
gravitational redshift. It is noted, however, these terms
may not pose problems, since gravitational field change
only gradually both in time and space. Such extension
is currently underway and will be published elsewhere.

APPENDIX

S(scat)
rad (ν,Ω) = −

(ν)2

(2π)3

∫

dΩ
′

Rscat(Ω,Ω
′

)×
(

f(ν,Ω)− f(ν,Ω
′

)
)

, (1)
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(Isoenergy-Scattering)

1. Discrete-ordinate Sn method

3. Indispensable to use implicit (or semi-Implicit) time evolution
Boltzmann equation possesses characteristics of “stiff equation”.

Finite difference discretization of 7 dimensional Boltzmann equation.

2. Boltzmann equation is 7D, integral, partial-differential equation
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Fig. 2.— Left: Discretized momentum space of neutrinos in the laboratory frame. Spherical coordinates are employed. The radial
direction corresponds to neutrino energy and the azimuthal dimension is omitted. The grid in each dimension may not be uniform. Right:
The Lorentz-transformed mesh in the fluid-rest frame. The blue lines correspond to the radial lines whereas the black lines are transformed
from the concentric circles in the left panel. The brown dots show an isoenergy circle in the fluid-rest frame for comparison. Matter is
assumed to move upward in this figure.

ings.
After giving the SR Boltzmann equations in the next

section, we present our idea to overcome these difficul-
ties. We then demonstrate our successful handling of the
isoenergetic scatterings in the realistic supernova simu-
lations (see Section 7).

4. SR BOLTZMANN EQUATIONS FOR NEUTRINOS

We start with the covariant form of Boltzmann equa-
tion:

pµ ∂f

∂xµ
+

dpi

dτ

∂f

∂pi
=

(δf

δτ

)

col
, (1)

which is valid even in curved space-time. In the above
expression, f(= f(xµ, pi)) denotes the neutrino distri-
bution function in phase space; xµ and pµ are space-
time coordinates and four-momentum of neutrino, re-
spectively; since the latter satisfies the on-shell condition:
pµpµ = −m2

ν , in which mν is a neutrino mass, only three
of four components are independent and this is why only
spatial components appear in the second term on the
left hand side; τ stands for the affine parameter of neu-
trino trajectory. The left hand side of Eq. (1) expresses a
geodesic motion in the phase space, while the right hand
side denotes symbolically the so-called collision terms,
i.e., the terms that give the rate of changes in f due to
neutrino-matter interactions.

On the spherical coordinates in flat space-time, which
are the coordinates we employ for the laboratory frame in
our Eulerian approach, Eq. (1) is cast into the following

conservation form:

∂f

∂t
+

µν

r2

∂

∂r
(r2f) +

√

1− µ2
ν cos φν

rsin θ

∂

∂θ
(sin θf)

+

√

1− µ2
ν sin φν

rsin θ

∂f

∂φ
+

1

r

∂

∂µν
[(1 − µ2

ν)f ]

−
√

1− µ2
ν

r

cos θ

sin θ

∂

∂φν
(sin φνf) =

(δf

δt

)lb

col
, (2)

where r, θ, φ denote the spatial variables; as three in-
dependent components of neutrino four-momentum, we
do not use its spacial components but adopt energy and
two angles, θν and φν (see Figure 3); µν is defined as
µν ≡ cos θν . In Eq. (2) and the rest of this paper, we as-
sume that neutrinos are massless, which is well justified
as long as neutrino oscillations are ignored.

The collision term in Eq. (2), which is expressed with
the laboratory time t, is related with the original collision
term in equation (1) as

(δf

δτ

)

col
= εlb

(δf

δt

)lb

col
, (3)

where εlb(≡ pt) denotes the neutrino energy measured in
the laboratory frame. Similarly, the collision term in the
fluid-rest frame can be expressed with the proper time of
each fluid element (t̃) as

(δf

δτ

)

col
= εfr

(δf

δt̃

)fr

col
, (4)

where εfr(≡ pt̃ ≡ −uµpµ) denotes the neutrino energy
in the fluid-rest frame. Here uµ is the four-velocity of
matter.

x

p
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Abstract

We propose a novel numerical method for solving multi-dimensional, special relativistic Boltzmann
equations for neutrinos coupled to hydrodynamics equations. It is meant to be applied to simulations
of core-collapse supernovae. We handle special relativity in a non-conventional way, taking account of
all orders of v/c. Consistent treatment of advection and collision terms in the Boltzmann equations
is the source of difficulties, which we overcome by employing two different energy grids: Lagrangian
remapped and laboratory fixed grids. We conduct a series of basic tests and perform a one-dimensional
simulation of core-collapse, bounce and shock-stall for a 15M! progenitor model with a minimum but
essential set of microphysics. We demonstrate in the latter simulation that our new code is capable
of handling all phases in core-collapse supernova. For comparison, a non-relativistic simulation is also
conducted with the same code, and we show that they produce qualitatively wrong results in neutrino
transfer. Finally, we discuss a possible incorporation of general relativistic effects in our method.
Subject headings: supernovae: general—neutrinos—hydrodynamics

1. INTRODUCTION

dN = f(t,p,x)d3pd3x (1)

Quantitative studies on the mechanism of core-collapse
supernovae (CCSNe) require detailed numerical simula-
tions. Except for low-mass (8 ∼ 10M!) progenitors,
elaborate one-dimensional (1D) simulations under spher-
ical symmetry have not reproduced the supernova ex-
plosion (Sumiyoshi et al. 2005; Liebendörfer et al. 2005;
Kitaura et al. 2006; Burrows et al. 2007). Last decade,
most of supernova modelers have focused on the multi-
dimensional (Multi-D) aspects of dynamics (see e.g., Ko-
take et al. (2012a); Janka (2012); Burrows (2013) for re-
cent review). In the post-bounce phase, instabilitities
drive post-shock accretion flows into turbulence, making
dynamics intrinsically multi-D. This may be crucial for
the supernova explosion, since the non-spherical turbu-
lent motions increase the dwell time of material in the
gain region, enhancing its absorption of hot neutrinos,
boosting the post shock pressure, and eventually pushing
the shock wave outwards (Takiwaki et al. 2012; Dolence
et al. 2013).
As a matter of fact, we have recently witnessed shock

revival in some of the currently most advanced simula-
tions (Burrows et al. 2006; Marek & Janka 2009; Suwa
et al. 2010; Lentz et al. 2012; Müller et al. 2012a,b; Taki-
waki et al. 2013), which has raised our hope that we will
finally unveil the mechanism of CCSNe. Unfortunately,
however, success or failure of the supernova explosion is
a delicate problem. In fact, the latest results of Multi-D
simulations by different groups are still at odds with one
another and no consensus has yet emerged concerning
which ingredient(s) is (are) essential for explosion. Al-
though various approaches, both phenomenological and
ab initio, are being undertaken at present, only better
simulations possibly with a Boltzmann-equation solver

that incorporate detailed microphysics and general rela-
tivity (GR) may give the conclusive answer.
Towards this goal, we are developing a numerical

code for neutrino transfer, which solves the Boltzmann
equations (Sumiyoshi & Yamada 2012). Our code is
based on the discrete-ordinate Sn method, which finite-
differences the Boltzmann equations, deploying multi-
angle and multi-energy bins in momentum space. Using
some snapshots from three-dimensional (3D) supernova
simulations, Sumiyoshi & Yamada (2012) demonstrated
the capabilities of this new code, which implements the
minimum set of neutrino reactions (see also Sumiyoshi et
al. (2014)). These simulations concerned neutrino trans-
fer in static backgrounds, however, and no back-reactions
to matter were taken into account.
The next step should be a coupling of this code with

a hydrodynamical code. This may not be so sim-
ple, though. Spherically symmetric 1D computations
may be easier, since they can adopt Lagrangian for-
mulations both for neutrino transfer and hydrodynam-
ics (Mezzacappa & Bruenn 1993; Mezzacappa et al.
2001; Liebendörfer et al. 2005; Sumiyoshi et al. 2005,
2007). Such formalisms as they are could not be applied
in Multi-D, however, and different formulations should
be developed for the Multi-D Boltzmann-Hydro simu-
lations, i.e. the simulations that solve the Boltzmann
equations and hydrodynamical equations simultaneously
in multi-dimensions.
Unlike the previous 1D codes, we adopt an Eulerian

picture in this paper. There are several reasons for this
choice. Among other things, we have in mind that the
Boltzmann solver will be coupled with a Multi-D Eule-
rian hydrodynamics and gravity solvers, which have been
well established and widely used in the high-energy as-
trophysical community. In addition, the Eulerian pic-
ture has a benefit to easily handle the left hand side
of Boltzmann equation, i.e., advection terms. In gen-

(Time evolution + Advection Term) (Collision Term)

and remembering the definition

dpt

dτ
¼ dxα

∂τ
∂pt

∂xα
!!!!
pi
þ dpi

dτ
∂pt

∂pi

!!!!
xμ

¼ pα ∂pt

∂xα
!!!!
pi
− Γi

αβpαpβ ∂pt

∂pi

!!!!
xμ
: (19)

The conservative form is also derived for a local
orthonormal frame. Starting from Eq. (3) with the choice
of ûa ¼ eað0Þ and Eqs. (12), (14)–(16), we obtain

1
ffiffiffiffiffiffi−gp

∂ð ffiffiffiffiffiffi−gp
ν−1pαfÞ

∂xα
!!!!
qðiÞ

þ 1

ν2
∂
∂ν ð−νfp

αpβ∇αe
β
ð0ÞÞ

þ 1

sin θ̄
∂
∂θ̄

#
ν−2 sin θ̄f

X3

j¼1

pαpβ∇αe
β
ðjÞ

∂lðjÞ

∂θ̄
$

þ 1

sin2θ̄
∂
∂φ̄

#
ν−2f

X3

j¼2

pαpβ∇αe
β
ðjÞ

∂lðjÞ

∂φ̄
$

¼ Srad; (20)

or a practical form

1
ffiffiffiffiffiffi−gp

∂
∂xα

!!!!
qðiÞ

%#
eαð0Þ þ

X3

i¼1

lðiÞeαðiÞ

$
ffiffiffiffiffiffi−gp

f
&

−
1

ν2
∂
∂ν ðν

3fωð0ÞÞ þ
1

sin θ̄
∂
∂θ̄ ðsin θ̄fωðθ̄ÞÞ

þ 1

sin2θ̄
∂
∂φ̄ ðfωðφ̄ÞÞ ¼ Srad; (21)

where

ωð0Þ ≔ ν−2pαpβ∇αe
β
ð0Þ ¼

X3

i¼1

lðiÞ

#
γi00 þ

X3

j¼1

γi0jlðjÞ

$
;

ωðθ̄Þ ≔
X3

j¼1

ωðjÞ
∂lðjÞ

∂θ̄ ;

ωðφ̄Þ ≔
X3

j¼2

ωðjÞ
∂lðjÞ

∂φ̄ ; (22)

and

ωðjÞ ≔ ν−2pαpβ∇αe
β
ðjÞ

¼ γ0j0 þ
X3

i¼1

lðiÞ

'
ðγ0ji þ γij0Þ þ

X3

k¼1

γijklðkÞ

(
: (23)

γαβγ ¼ −γβαγ is the Ricci rotation coefficients defined by
γαβγ ≔ eaðαÞe

b
ðγÞ∇bðeðβÞÞa. We also used

∇a

)
eað0Þ þ

X3

i¼1

lðiÞeaðiÞ
*
¼
X3

i¼1

)
γi0i− γ0i0lðiÞ þ

X3

k¼1

γikilðkÞ

*
;

−cot θ̄
∂lðjÞ

∂θ̄ −
1

sin2θ̄

∂2lðjÞ

∂φ̄2
¼lðjÞ;

∂lðiÞ

∂θ̄
∂lðjÞ

∂θ̄ þ 1

sin2θ̄

∂lðiÞ

∂φ̄
∂lðjÞ

∂φ̄ ¼ δij−lðiÞlðjÞ:

Note that the partial derivative with respect to xα that
appears in the first term for Eqs. (20) and (21) has to be
taken fixing ν, θ̄, and φ̄ (not fixing pi). For Eq. (21), it is
trivially seen that N ¼

R
dN is the conserved quantity [see

Eqs. (4) and (9)].
It is soon found that ωð0Þ is related to ωðiÞ by

ωð0Þ ¼ −
X3

i¼1

ωðiÞlðiÞ: (24)

Since lðiÞ, ∂lðiÞ=∂θ̄, and ð∂lðiÞ=∂φ̄Þ= sin θ̄ constitute an
orthonormal set of the unit vector in the local three-
momentum space of subscript ðiÞ, we find that ωð0Þ,
ωðθ̄Þ, and ωðφ̄Þ are the independent components of ωðiÞ.
½ωð0Þ;ωðθ̄Þ;ωðφ̄Þ& are independent projection components of
the ωðiÞ vector, satisfying

ω2
ð0Þ þ ω2

ðθ̄Þ þ
1

sin2θ̄
ω2
ðφ̄Þ ¼

X3

i¼1

ω2
ðiÞ: (25)

We note that ωð0Þ and ωðjÞ are composed of nine basis
functions of Ylmðθ̄; φ̄Þ with 0 ≤ l ≤ 2 and 0 ≤ jmj ≤ 2,
where Ylm is the spherical harmonics function. Also,
ωðθ̄Þ sin θ and ωðφ̄Þ are composed of fourteen basis functions
of Ylmðθ̄; φ̄Þ with 0 ≤ l ≤ 3 and 0 ≤ jmj ≤ 2. Thus, in
general, ½ωð0Þ;ωðθ̄Þ;ωðφ̄Þ& are written as functions of these
basis functions, although with a good choice of the tetrad,
they can be written in a simple form in particular for
spacetime of a special symmetry (see below).

C. Explicit form in black hole spacetime

1. Schwarzschild black hole

As an illustration, we explicitly describe the con-
servative form of Boltzmann’s equation in black-hole
spacetime. As the simplest case, first, we choose the
Schwarzschild background for which the line element is
written as

ds2 ¼ −
#
1 −

2M
r

$
dt2 þ

#
1 −

2M
r

$−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ; (26)

SHIBATA et al. PHYSICAL REVIEW D 89, 084073 (2014)

084073-4

Conservative form of GR Boltzmann eq.

Shibata, Nagakura, Sekiguchi, and Yamada (2014)

14



Nuclear-statistical Equilibrium EOS 
Hempel et al. 2011, Furusawa et al. 2011, Steiner et al. 2013 and Furusawa, H.N et al. 2017
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Fig. 1.— The mass fractions of nuclei in the (N,Z) plane for ρB = 1011g/cm3, T = 1MeV
and Yp = 0.3. The cross indicates the representative nucleus for the H. Shen’s EOS under

the same condition.

Fig. 2.— The mass fractions of nuclei in the (N,Z) plane for ρB = 1013.5 g/cm3, T = 1MeV
and Yp = 0.3. The cross indicates the representative nucleus for the H. Shen’s EOS under
the same condition.
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Some Critical Assessments
✓Microphysics

‣ basic set

Kotake et al. ‘18

‣ extensions in leptonic sectors

Bollig et al. ‘18

•neutrino interactions are one of the most important ingredients. 
•6 species of ! interact with hadrons (nucleons and nuclei) and 
leptons (electrons, muons and other neutrinos).

Lepton Sectors (including muons):

between neutrinos and nucleons were handled by the for-
malismofRefs. [20,21],which includes the effects of nucleon
correlations by a random-phase approximation (RPA). We
generalized the treatment to also include corrections due to
neutron and proton mean-field potentials in the β processes
[22–24] and due to the large rest masses of μ− and μþ. Weak-
magnetism corrections according to Ref. [13] are used in all
neutral and charged-current neutrino-nucleon interactions
(cf. Ref. [16]) except in charged-current reactions of νμ
and ν̄μ with nucleons (because lepton-mass dependence
was neglected in Ref. [13]). Neutral and charged-current
reactions of neutrinoswith nucleons bound in light nuclei (2H,
3H, 3He) were approximated by using the neutrino-nucleon
interactions ofRef. [25],which slightly overestimates (mainly
at low energies) the collective opacity of these reactions
compared to the detailed description in Ref. [26]. When
specified, we included in neutrino-nucleon scatterings virial
corrections for the axial response of nuclear matter at low
densities [27,28] and/or applied a strangeness-dependent
contribution to the axial-vector coupling coefficient [13] with
a value of gsA ¼ −0.1, consistent with experimental con-
straints [29]. The virial corrections were implemented via an
effective interaction in the RPA that was stronger at low
densities. This yielded results similar to those in Ref. [27].
Our SN simulations were performed in 2D for a

nonrotating 20 M⊙ progenitor model [30] with the
Lattimer-Swesty EOS (LS220) with nuclear incompress-
ibility K ¼ 220 MeV [31] and the SFHo EOS [32,33]
(models s20.0-LS220 and s20.0-SFHo, respectively). After
bounce, at densities below 1011 g cm−3, we employed a
23-species NSE solver at T > 0.5 MeV for infalling and
T > 0.34 MeV for expanding, high-entropy matter, and
nuclear “flashing” [15] at lower temperatures. For the
polar coordinate grid we used a time-dependent number
of 400–650 radial zones and 160 lateral zones with a
refinement to 320 lateral zones outside of the gain radius
(i.e., the radius exterior to which neutrino heating domi-
nates), and for the neutrino transport 15 geometrically
distributed energy bins with ϵmax ¼ 380 MeV.
Results.—In addition to conducting simulations for the

two employed nuclear EOSs with our standard set of
neutrino processes (Table 1 in Ref. [19]), we also inves-
tigated cases where we included (a) the virial corrections in
ν − N scattering, (b) all muon effects, (c) both muon and
virial effects, and (d) muons, virial effects, and a strange-
ness correction in ν − N scattering. Figure 1 displays the
time evolution of the average shock radii for the models
with SFHo (top left) and LS220 EOS (top right). It is
obvious that muon formation enables an explosion for the
SFHo model, which does not explode with standard
neutrino physics, and it allows for an earlier onset of the
explosion with the LS220 EOS.
Figure 2 compares the evolution of angle-averaged radial

profiles of the entropy per baryon (superimposed in color
on mass-shell trajectories) for two SFHo models. After the

arrival of the interface between the silicon-shell and
oxygen-rich Si layer at the shock at ∼240 ms PB, the
shock radius in the model with muons is considerably
larger than in the standard case, leading to an explosion,
despite the inverse order of the shock radii at earlier times
(Fig. 1). The lower panels of Fig. 1 provide an explanation:
with muons the proto-NS contracts notably faster (left). The
creation of μ− and μþ effectively softens the EOS by
conversion of thermal and degeneracy energy of e− into
rest-mass energy of muons. In addition, it significantly
raises the emission of ν̄μ and, to a lesser extent, also of νμ
(Fig. 3, middle panels). The accelerated shrinking of the NS
leads to higher temperatures at given densities and corre-
spondingly increased luminosities and mean energies of the
emitted electron- and τ-flavor neutrinos, which are shown
in Fig. 3 (left-hand and right-hand panels) at the gain
radius, where νe and ν̄e differences are relevant for the
neutrino heating. As a consequence, the neutrino-heating
rate, per baryon as well as integrated over the gain layer
(i.e., the region between gain radius and shock), becomes
sizably greater in the model with muons at t≳ 240 ms
(Fig. 1, bottom right). Muons therefore have a similar
overall effect as the strangeness-dependent reduction of
neutrino-nucleon scattering discussed in Ref. [3].
Figure 4 documents the appearance of significant charged-

muon number (up to Yμ ∼ 0.05) (at the expense of e−)
correlated with a temperature maximum in the NS between
∼7 km (∼4×1014gcm−3) and∼21 km (∼2 × 1013 g cm−3).
While in the model without muons νμ are more abundant
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FIG. 1. Upper row: Angle-averaged shock radii (solid line) and
mass-infall rates (at 400 km, dashed line) versus postbounce time
for our sets of models with SFHo (left) and LS220 EOS (right).
Lower row: Time evolution of NS radii (measured at an average
density of 1011 g cm−3, left) and net heating rate integrated over
the gain layer (in 1 B s−1 ¼ 1051 erg s−1, right) for models with
SFHo EOS.
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between neutrinos and nucleons were handled by the for-
malismofRefs. [20,21],which includes the effects of nucleon
correlations by a random-phase approximation (RPA). We
generalized the treatment to also include corrections due to
neutron and proton mean-field potentials in the β processes
[22–24] and due to the large rest masses of μ− and μþ. Weak-
magnetism corrections according to Ref. [13] are used in all
neutral and charged-current neutrino-nucleon interactions
(cf. Ref. [16]) except in charged-current reactions of νμ
and ν̄μ with nucleons (because lepton-mass dependence
was neglected in Ref. [13]). Neutral and charged-current
reactions of neutrinoswith nucleons bound in light nuclei (2H,
3H, 3He) were approximated by using the neutrino-nucleon
interactions ofRef. [25],which slightly overestimates (mainly
at low energies) the collective opacity of these reactions
compared to the detailed description in Ref. [26]. When
specified, we included in neutrino-nucleon scatterings virial
corrections for the axial response of nuclear matter at low
densities [27,28] and/or applied a strangeness-dependent
contribution to the axial-vector coupling coefficient [13] with
a value of gsA ¼ −0.1, consistent with experimental con-
straints [29]. The virial corrections were implemented via an
effective interaction in the RPA that was stronger at low
densities. This yielded results similar to those in Ref. [27].
Our SN simulations were performed in 2D for a

nonrotating 20 M⊙ progenitor model [30] with the
Lattimer-Swesty EOS (LS220) with nuclear incompress-
ibility K ¼ 220 MeV [31] and the SFHo EOS [32,33]
(models s20.0-LS220 and s20.0-SFHo, respectively). After
bounce, at densities below 1011 g cm−3, we employed a
23-species NSE solver at T > 0.5 MeV for infalling and
T > 0.34 MeV for expanding, high-entropy matter, and
nuclear “flashing” [15] at lower temperatures. For the
polar coordinate grid we used a time-dependent number
of 400–650 radial zones and 160 lateral zones with a
refinement to 320 lateral zones outside of the gain radius
(i.e., the radius exterior to which neutrino heating domi-
nates), and for the neutrino transport 15 geometrically
distributed energy bins with ϵmax ¼ 380 MeV.
Results.—In addition to conducting simulations for the

two employed nuclear EOSs with our standard set of
neutrino processes (Table 1 in Ref. [19]), we also inves-
tigated cases where we included (a) the virial corrections in
ν − N scattering, (b) all muon effects, (c) both muon and
virial effects, and (d) muons, virial effects, and a strange-
ness correction in ν − N scattering. Figure 1 displays the
time evolution of the average shock radii for the models
with SFHo (top left) and LS220 EOS (top right). It is
obvious that muon formation enables an explosion for the
SFHo model, which does not explode with standard
neutrino physics, and it allows for an earlier onset of the
explosion with the LS220 EOS.
Figure 2 compares the evolution of angle-averaged radial

profiles of the entropy per baryon (superimposed in color
on mass-shell trajectories) for two SFHo models. After the

arrival of the interface between the silicon-shell and
oxygen-rich Si layer at the shock at ∼240 ms PB, the
shock radius in the model with muons is considerably
larger than in the standard case, leading to an explosion,
despite the inverse order of the shock radii at earlier times
(Fig. 1). The lower panels of Fig. 1 provide an explanation:
with muons the proto-NS contracts notably faster (left). The
creation of μ− and μþ effectively softens the EOS by
conversion of thermal and degeneracy energy of e− into
rest-mass energy of muons. In addition, it significantly
raises the emission of ν̄μ and, to a lesser extent, also of νμ
(Fig. 3, middle panels). The accelerated shrinking of the NS
leads to higher temperatures at given densities and corre-
spondingly increased luminosities and mean energies of the
emitted electron- and τ-flavor neutrinos, which are shown
in Fig. 3 (left-hand and right-hand panels) at the gain
radius, where νe and ν̄e differences are relevant for the
neutrino heating. As a consequence, the neutrino-heating
rate, per baryon as well as integrated over the gain layer
(i.e., the region between gain radius and shock), becomes
sizably greater in the model with muons at t≳ 240 ms
(Fig. 1, bottom right). Muons therefore have a similar
overall effect as the strangeness-dependent reduction of
neutrino-nucleon scattering discussed in Ref. [3].
Figure 4 documents the appearance of significant charged-

muon number (up to Yμ ∼ 0.05) (at the expense of e−)
correlated with a temperature maximum in the NS between
∼7 km (∼4×1014gcm−3) and∼21 km (∼2 × 1013 g cm−3).
While in the model without muons νμ are more abundant
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FIG. 1. Upper row: Angle-averaged shock radii (solid line) and
mass-infall rates (at 400 km, dashed line) versus postbounce time
for our sets of models with SFHo (left) and LS220 EOS (right).
Lower row: Time evolution of NS radii (measured at an average
density of 1011 g cm−3, left) and net heating rate integrated over
the gain layer (in 1 B s−1 ¼ 1051 erg s−1, right) for models with
SFHo EOS.
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between neutrinos and nucleons were handled by the for-
malismofRefs. [20,21],which includes the effects of nucleon
correlations by a random-phase approximation (RPA). We
generalized the treatment to also include corrections due to
neutron and proton mean-field potentials in the β processes
[22–24] and due to the large rest masses of μ− and μþ. Weak-
magnetism corrections according to Ref. [13] are used in all
neutral and charged-current neutrino-nucleon interactions
(cf. Ref. [16]) except in charged-current reactions of νμ
and ν̄μ with nucleons (because lepton-mass dependence
was neglected in Ref. [13]). Neutral and charged-current
reactions of neutrinoswith nucleons bound in light nuclei (2H,
3H, 3He) were approximated by using the neutrino-nucleon
interactions ofRef. [25],which slightly overestimates (mainly
at low energies) the collective opacity of these reactions
compared to the detailed description in Ref. [26]. When
specified, we included in neutrino-nucleon scatterings virial
corrections for the axial response of nuclear matter at low
densities [27,28] and/or applied a strangeness-dependent
contribution to the axial-vector coupling coefficient [13] with
a value of gsA ¼ −0.1, consistent with experimental con-
straints [29]. The virial corrections were implemented via an
effective interaction in the RPA that was stronger at low
densities. This yielded results similar to those in Ref. [27].
Our SN simulations were performed in 2D for a

nonrotating 20 M⊙ progenitor model [30] with the
Lattimer-Swesty EOS (LS220) with nuclear incompress-
ibility K ¼ 220 MeV [31] and the SFHo EOS [32,33]
(models s20.0-LS220 and s20.0-SFHo, respectively). After
bounce, at densities below 1011 g cm−3, we employed a
23-species NSE solver at T > 0.5 MeV for infalling and
T > 0.34 MeV for expanding, high-entropy matter, and
nuclear “flashing” [15] at lower temperatures. For the
polar coordinate grid we used a time-dependent number
of 400–650 radial zones and 160 lateral zones with a
refinement to 320 lateral zones outside of the gain radius
(i.e., the radius exterior to which neutrino heating domi-
nates), and for the neutrino transport 15 geometrically
distributed energy bins with ϵmax ¼ 380 MeV.
Results.—In addition to conducting simulations for the

two employed nuclear EOSs with our standard set of
neutrino processes (Table 1 in Ref. [19]), we also inves-
tigated cases where we included (a) the virial corrections in
ν − N scattering, (b) all muon effects, (c) both muon and
virial effects, and (d) muons, virial effects, and a strange-
ness correction in ν − N scattering. Figure 1 displays the
time evolution of the average shock radii for the models
with SFHo (top left) and LS220 EOS (top right). It is
obvious that muon formation enables an explosion for the
SFHo model, which does not explode with standard
neutrino physics, and it allows for an earlier onset of the
explosion with the LS220 EOS.
Figure 2 compares the evolution of angle-averaged radial

profiles of the entropy per baryon (superimposed in color
on mass-shell trajectories) for two SFHo models. After the

arrival of the interface between the silicon-shell and
oxygen-rich Si layer at the shock at ∼240 ms PB, the
shock radius in the model with muons is considerably
larger than in the standard case, leading to an explosion,
despite the inverse order of the shock radii at earlier times
(Fig. 1). The lower panels of Fig. 1 provide an explanation:
with muons the proto-NS contracts notably faster (left). The
creation of μ− and μþ effectively softens the EOS by
conversion of thermal and degeneracy energy of e− into
rest-mass energy of muons. In addition, it significantly
raises the emission of ν̄μ and, to a lesser extent, also of νμ
(Fig. 3, middle panels). The accelerated shrinking of the NS
leads to higher temperatures at given densities and corre-
spondingly increased luminosities and mean energies of the
emitted electron- and τ-flavor neutrinos, which are shown
in Fig. 3 (left-hand and right-hand panels) at the gain
radius, where νe and ν̄e differences are relevant for the
neutrino heating. As a consequence, the neutrino-heating
rate, per baryon as well as integrated over the gain layer
(i.e., the region between gain radius and shock), becomes
sizably greater in the model with muons at t≳ 240 ms
(Fig. 1, bottom right). Muons therefore have a similar
overall effect as the strangeness-dependent reduction of
neutrino-nucleon scattering discussed in Ref. [3].
Figure 4 documents the appearance of significant charged-

muon number (up to Yμ ∼ 0.05) (at the expense of e−)
correlated with a temperature maximum in the NS between
∼7 km (∼4×1014gcm−3) and∼21 km (∼2 × 1013 g cm−3).
While in the model without muons νμ are more abundant
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FIG. 1. Upper row: Angle-averaged shock radii (solid line) and
mass-infall rates (at 400 km, dashed line) versus postbounce time
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the gain layer (in 1 B s−1 ¼ 1051 erg s−1, right) for models with
SFHo EOS.
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Weak Interactions

Some Critical Assessments
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‣ extensions in leptonic sectors
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•neutrino interactions are one of the most important ingredients. 
•6 species of ! interact with hadrons (nucleons and nuclei) and 
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Fig. 3.— Explosion diagnostics for model 3Ds (thick lines) compared to the non-exploding model 3Dn (thin lines) as functions of post-bounce time tpb. Top

left: Angle-averaged shock radius (black), gain radius (red) and NS radius (blue; defined by a density of 1011 g cm�3); top right: diagnostic energy (positive
total energy behind the shock). Gray lines display the corresponding 2D models without (2Dn, thin) and with strangeness contributions (2Ds, thick); middle

left: mass-accretion rate (Ṁ) ahead of the shock (red) and baryonic NS mass (blue); middle right, bottom left and right: mass, non-radial kinetic energy, and
time-integrated neutrino-energy deposition in the gain layer, respectively.

ca according to

ca =
1
2
�±ga � g

s
a
�
, (3)

where the plus sign is for ⌫p and the minus sign for ⌫n scatter-
ing (see, e.g., Horowitz 2002; Langanke & Martı́nez-Pinedo
2003). Since g

s
a  0, the cross section for ⌫p-scattering is

increased and for ⌫n-scattering decreased.
Employing Eq. (2) with g

s
a = �0.2, Horowitz (2002) es-

timates 15, 21, 23% reduction of the neutral-current opac-
ity for a neutron-proton mixture with electron fractions Ye =
0.2, 0.1, 0.05, which are typical values for the layer be-
tween neutrinosphere (at density ⇢ ⇠ 1011 g cm�3) and ⇢ ⇠
1013 g cm�3 for hundreds of milliseconds after bounce. Since
strangeness does not a↵ect charged-current interactions and
NS matter is neutron-rich, the reduced scattering opacity al-
lows mainly heavy-lepton neutrinos (⌫x ⌘ ⌫µ, ⌫̄µ, ⌫⌧, ⌫̄⌧) to

leave the hot accretion mantle of the PNS more easily. This
was found to enhance the expansion of the stalled SN shock
in 1D models, although not enough for successful shock re-
vival (Liebendörfer et al. 2002; Langanke & Martı́nez-Pinedo
2003). However, below we will show that the situation can be
fundamentally di↵erent in 3D simulations.

4. RESULTS

We compare 2D and 3D core-collapse simulations of the
20 M� star with strangeness corrections in neutrino-nucleon
scatterings, using g

s
a = �0.2 (models 2Ds, 3Ds), to corre-

sponding simulations without strange quark e↵ects (gs
a = 0;

models 2Dn, 3Dn) as in all SN simulations of the Garching
group so far. To explore “extreme” e↵ects, our choice of g

s
a

is by its absolute value somewhat bigger than theoretical and
experimental determinations of g

s
a ⇠ �0.1 (Ellis & Karliner

1997; Alexakhin et al. 2007; Airapetian et al. 2007).
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Nucleon Neutral Weak Current

2.2. NUCLEON NEUTRAL WEAK CURRENT

pµ
p�

µ

Z0

Figure 2.1: Depiction of the neutral weak nucleon vertex.

this insensitivity to neutrino flavor makes NCE interactions ideal for measuring neutrino

spectra from nearby supernovae since most of that flux is ⌫µ and ⌫⌧ [42, 43]. Several

proposals have been made to measure these events in existing detectors (e.g. [44, 45]).

The work presented here focuses on using neutrinos to measure nucleon structure. In

order to understand how this is possible, the formalism of the nucleon neutral weak current

is presented next.

2.2 Nucleon Neutral Weak Current

The diagram in figure 2.1 illustrates the neutral weak interaction with the nucleon. The

current for this interaction can be written

Jµ = hN(p0)|F1(Q2)�µ + F2(Q2)�µ⌫q
⌫ + GA(Q2)�µ�5|N(p)i (2.1)

where F1(Q2), F2(Q2), and GA(Q2) are the nucleon form factors and Q
2 is related to the

four-momentum transferred to the nucleon q
⌫ by

Q
2 = �(q⌫)2 = �(p⌫ 0 � p

µ)2. (2.2)
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The first two terms in the current are the vector contribution where F1(Q2) and F2(Q2)

are respectively the Dirac and Pauli form factors. The last term in the current is the axial

current where GA(Q2) is the nuclear axial form factor.

The Q
2 dependence of the form factors is typically parametrized using a dipole form.

As an example, the Q
2 dependence of the axial form factor is given here

GA(Q2) =
1
2

GA(0)
(1 + Q2/M2

A
)
⌧3 + G

s

A(Q2) (2.3)

where GA(0) is precisely determined from beta decay measurements, MA is the dipole cuto↵

mass, ⌧3 is +1 (�1) for proton (neutron) scattering, and a term due to the contribution

from strange quarks has been explicitly introduced.

Experiments have shown that strange quarks in the nucleon quark sea contribute to

nucleon mass and momentum (e.g. [46–48]). It is therefore important to consider possible

strange quark contributions to the neutral weak nucleon current. These contributions enter

the current as the additional form factors: F
s
1 (Q2), F

s
2 (Q2), and G

s

A
(Q2). The Q

2 evolution

of these form factors can also be parameterized by a dipoles:

F
s

1 (Q2) =
1
6

�r
2
sQ

2

(1 + Q2/M1
1 )2

(2.4)

F
s

2 (Q2) =
µs

(1 + Q2/M2
2 )2

(2.5)

G
s

A(Q2) =
1
2

�s

(1 + Q2/M2
A
)

(2.6)

where M1 and M2 are the relevant masses of the strange vector form factors2, rs is the

strange radius of the nucleon (analogous to the nucleon charge radius), µs is the strange

anomalous magnetic moment of the nucleon, and �s is the component of nucleon spin

carried by strange quarks.

Much e↵ort has been spent to understand the structure of the nucleon through measure-

ments of its strange and non-strange form factors with both electron and neutrino scattering

experiments. The results of the electron exeriments are discussed next.
2
These masses are commonly set to be equal to the vector cuto↵ mass MV : M1 = M2 = MV .
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Weak magnetism

Strangeness contribution
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charge of the nucleon. The weak vector charge is Cv,n = −1/2
for scattering from a neutron n and Cv,p = 1/2 − 2 sin2 θW ≈
0 for scattering from a proton p. Here θW is the weak mixing
angle. The cross section in Eq. (2) neglects corrections of order
Eν/m from weak magnetism and other effects; for details, see
Ref. [28].

The free cross section per unit volume for scattering from
a mixture of neutrons and protons is then given by

1
V

dσ0

d$
= nn

dσ0

d$νn
+ np

dσ0

d$νp
, (3)

= G2
F E2

ν

16π2

[
g2

a(3 − cos θ )(nn + np) + (1 + cos θ )nn

]
.

(4)

In the medium this cross section is modified by the density
(vector) SV and the spin (axial) SA response. The response of
the system to density fluctuations is described by SV , while SA

describes the response of the system to spin fluctuations. The
response functions are normalized to unity in the low-density
limit SV ,SA → 1 as n → 0. The cross section per unit volume
in the medium is then given by

1
V

dσ

d$
= G2

F E2
ν

16π2

[
g2

a(3 − cos θ )(nn + np)SA

+ (1 + cos θ )nnSV

]
. (5)

Note that dσ/d$ reduces to the free cross section dσ0/d$ as
SA,SV → 1. In general both SV and SA depend on momentum
transfer q. However, in the limit q → 0 we can derive model-
independent virial results.

A. Virial equation of state

Next, we briefly review the virial equation of state for a
system with neutrons and protons [21]. We use this to calculate
SV and SA. The pressure P is expanded to second order in the
fugacities of neutrons, zn, and protons, zp,

P

T
= ln Q

V
= 2

λ3

[
zn + zp +

(
z2
n + z2

p

)
bn + 2zpznbpn

]
. (6)

Here T is the temperature, V is the volume of the system, and
Q is the grand-canonical partition function. The fugacities are
related to the neutron µn and proton µp chemical potentials
by zn = eµn/T and zp = eµp/T . Finally, the second virial
coefficients bn and bpn are calculated from nucleon-nucleon
elastic-scattering phase shifts. These are tabulated in Ref. [21].

The neutron nn and proton np densities follow from
derivatives of ln Q,

ni = zi

∂

∂zi

(
ln Q

V

)∣∣∣∣
V,T

. (7)

This gives

nn = 2
λ3

(
zn + 2z2

nbn + 2zpznbpn

)
, (8)

np = 2
λ3

(
zp + 2z2

pbn + 2zpznbpn

)
. (9)

B. Vector response

The vector response SV is equal to the static structure factor
Sq ; see, for example, Refs. [25,29]. For a single-component
system

SV (q = 0) = T

(∂P/∂n)T
. (10)

By using the virial equation of state this can be rewritten with
dP/dn = n/(T z)(dz/dn) as

SV = 1
n
z

∂

∂z
n. (11)

Following Ref. [7], we generalize this result to a mixture of
neutrons and protons:

SV = Cn
v

2Snn + 2Cn
v C

p
v Snp + C

p
v

2
Spp

Cn
v

2nn + C
p
v

2
np

, (12)

where

Snn = zn

∂

∂zn

nn = nn + 4
λ3

z2
nbn, (13)

Snp = zp

∂

∂zp

nn = 4
λ3

zpznbpn, (14)

Spp = zp

∂

∂zp

np = np + 4
λ3

z2
pbn. (15)

By using Eqs. (13)–(15), we have for SV

SV = 1 + 4
λ3

Cn
v

2z2
nbn + 2Cn

v C
p
v znzpbpn + C

p
v

2
z2
pbn

Cn
v

2nn + C
p
v

2
np

. (16)

In the limit C
p
v ≈ 0 this reduces to the neutron-matter

result [25]

SV = 1 + 4
λ3

z2
nbn

nn

. (17)

Here the impact of protons is to somewhat modify the neutron
fugacity zn because of the bpn term in the neutron density,
Eq. (8). The virial coefficient bn ≈ 0.32 is small and positive.
As a result, the vector response is slightly enhanced (larger
than one) as shown in Fig. 1. Attractive nucleon-nucleon
interactions increase the probability to find nucleons close
together. These density fluctuations increase the (local) weak
charge and produce a vector response SV > 1.

C. Axial response

To calculate the axial response SA we generalize our virial
equation of state to describe spin-polarized nuclear matter. Let
z+
p , z+

n be the fugacities for spin-up p and n, and z−
p , z−

n be the
spin-down fugacities. Generalizing the results of Ref. [25], we
have for the density of spin-up neutrons n+

n ,

n+
n = 1

λ3

[
z+
n + 2b+z+

n
2 + 2z+

n (b−z−
n + b+

pnz
+
p + b−

pnz
−
p )

]
.

(18)
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Many-body corrections

Core-collapse supernova explosion 2731

Figure 18. Shock radius evolution for the 11- and 19-M! progenitors, with
and without many-body corrections to the neutrino–nucleon scattering cross-
section. The inclusion of many-body effects is crucial for the explosion of the
19-M! progenitor, and strengthens the explosion of the 11-M! progenitor.

Fig. 18 provides a comparison of the evolution of the mean shock
radius with time after bounce for all the models in our modest
sensitivity study. From a comparison of models 19-M! (default:
678 × 128 × 256, green), 19-M!-LR (low-resolution: 678 × 64 ×
128, red), and 19-M!-HR (high-resolution: 678 × 256 × 512,
purple), we see that if the resolution is too low a model that otherwise
explodes will not. This is, of course, a qualitative difference and is
explained and analysed in more detail in Nagakura et al. (2019a).
The increased numerical viscosity at lower resolution inhibits the
turbulent pressure important in almost all neutrino-driven models
of explosion. We also see that the higher resolution model explodes
earlier. This result puts a premium on spatial resolution as a factor
in the interpretation of model results in the literature. We note that
this 19-M!-HR model is one of the highest resolution 3D supernova
models ever performed using a spherical grid.

From Fig. 18, we learn that, whereas the many-body correction
makes little qualitative difference for the 11-M! progenitor (11-M!
versus 11-M!-NoMB), without it (19-M!-NoMB, magenta) our
otherwise default 3D 19-M! model does not explode. The density
profile of the 11-M! progenitor all but ensures explosion for a range
of microphysics, but to get the 19-M! model (and, presumably, other
more massive progenitors) to explode the many-body correction, as
we have currently implemented it (Horowitz et al. 2017), has proven
supportive. The many-body effect decreases slightly the neutrino–
nucleon scattering rate, thereby accelerating the shrinkage of the
core. This raises by the resulting compression the temperatures
around the νe and ν̄e neutrinospheres and, as a result, the heating
rates due to absorption on nucleons near the stalled shock wave.
This facilitates explosion. What the effect may be of anticipated
improvements down the road in this class of corrections is yet to
be determined (Burrows & Sawyer 1998, 1999; Roberts, Reddy &
Shen 2012; Roberts & Reddy 2017).

Also in Fig. 18, we find that there is little difference between
models using the full multipole gravitational expansion (19-M!-
MP) and those that retain only the monopole. This is due to the
strong central concentration of the generic core-collapse structure
and the fact that all our initial models are non-rotating.

Fig. 19 plots the evolution with time after bounce of the diagnostic
energy of exploding models. We see that the many-body correc-
tion increases the explosion energy of the 11-M! progenitor by
∼20 per cent and that higher resolution does the same (at least in this
comparison study) for the 19-M! model. These are not qualitative

Figure 19. Diagnostic explosion energy for the 11- and 19-M! progenitors,
with and without many-body corrections to the neutrino nucleon scattering
cross-section. See the text for a discussion.

Figure 20. Heating efficiencies for the 11- and 19-M! progenitors, with
and without many-body corrections to the neutrino–nucleon scattering
cross-section. The inclusion of many-body effects leads to a more rapid
contraction of the PNS, resulting in slightly higher neutrino rms energies,
and, consequently, higher heating efficiencies. See text for a discussion.

differences, but important ones, as we attempt to determine, or at
least bracket, the salient quantities of theoretical CCSN explosions.

Fig. 20 displays the heating efficiencies (η) for all our sensitivity
calculations. The efficiency is defined as the ratio of the neutrino
power deposition rate by νe and ν̄e absorption in the gain region
behind the shock wave and the sum of the angle- and group-
integrated νe and ν̄e luminosities. This number does not include
the subdominant heating rate due to inelastic scattering, though
the simulations do. η is approximately a measure of the ‘optical
depth’ to neutrino absorption and ranges from ∼4 per cent to
∼8 per cent. Core-collapse supernovae are a ‘5–10 per cent’ effect,
not the ‘∼1 per cent’ effect often quoted. We see that during the first
∼0.2 s there is little difference between the various models with the
same progenitor mass. The high-resolution 19-M! model does have
a slightly higher energy deposition rate than the default model, and
higher still than the low-resolution realization. This is one of the
reasons for the qualitative difference in the outcomes (HR versus
LR) (Nagakura et al. 2019a). In addition, the default 11-M! model
with the many-body correction has a ∼3 per cent higher heating
rate early on, but in a time-averaged sense is not much different
after explosion. Not unexpectedly, the comparison between the two
models with and without the higher-order multipole gravity terms
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•Nucleons are interacting with each other and their spatial and  
temporal correlations cannot be ignored: RPA and Virial corrections 

•These many-body corrections, which reduce the opacities, have  
visibly positive influences on shock revival.

Burrows et al. ‘20

✓ The actual magnitude and functional form of the many-body 
corrections to the neutrino-matter rates (both neutral and 
charged-current) still need to be explored and verified.

The spin (axial) S  responseA

Horowitz et al. 2017
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- Nucleon bremsstrahlung of neutrino pairs

the parametrization and the one from the kernel treatment
are the same, as expected since the underlying interaction is
the same.
We briefly comment on the differences between the

bremsstrahlung treatments. The difference between the
T-matrix and OPE treatment is very obvious for densities
over 1014 g cm−3. There, the prescriptions derived from the
OPE potential give emissivities more than 10 times greater
than the T-matrix prescription. This suppression of the rates
at high densities, and also the more modest enhancement
of the rates at low density when compared to the OPE
interaction is a consequence of the T-matrix treatment
[38,48,50]. The parametrization, which is based on the
nondegenerate limit of the OPE generally produces com-
parable rates for the conditions used here. However, we
note that the high temperature at nuclear densities resulting
from Eq. (15) are higher then expected during the cooling
phase and therefore under those conditions we would
expect a larger deviation of the simplified rate from the
OPE results. The rates that are expected to be important

during the CCSN evolution are the ones near and around
the neutrinospheres where the neutrinos are decoupling
from the matter. At high densities, the neutrinos are in
equilibrium and the precise rate does not matter, and at low
densities the rate is so low that it does not contribute
appreciable to the overall neutrino emission. As pointed out
in [49], the key densities are around ρ≳ 1012 g cm−3

during the early core-collapse phase and upward of
ρ ∼ 1014 g cm−3 for the cooling phase. Over and above
this, it is important to note that the many competing
neutrino rates, and their strong temperature dependence,
like electron-positron annihilation, often reduce the impact
of changes in any one rate.
In addition to the differences that arise from the different

interactions (in the case of bremsstrahlung), differences
in the actual dynamical evolution can stem from the
differences in the transport treatment. As discussed above
in Sec. II A, for the simplified methods, the final state
neutrino blocking is not taken in account properly for the
emission, nor is the precise form of the annihilation

FIG. 1. Number emissivities for the different pair-production processes for heavy-lepton neutrinos. For the bremsstrahlung we show
the emissivity from the Hannestad and Raffelt (1998) [37] OPE potential kernel (green), the Guo et al. (2019) [38] T-matrix kernel (red),
and the parametrization from Burrows et al. (2006) [39] (purple). For the electron-positron annihilation we show the emissivity based on
the kernels (solid blue) and our parametrization of them (dashed blue), both from Bruenn (1985) [40]. We note that for the two electron-
positron interactions we expect the same emissivities as the underlying interaction is the same.

AURORE BETRANHANDY and EVAN O’CONNOR PHYS. REV. D 102, 123015 (2020)

123015-6

Major production channel of muon- and tau- neutrinos
Major role in proto-neutron star cooling phase

Betranhandy and O’Connor 2020 
(see also Guo and Martinez-Pinedo 2019)
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more details. The free energy density of the uniform
nuclear matter is obtained by solving the Schroedinger
equation. The Hamiltonian consists of the kinetic,
the AV18 two-body potential (Wiringa et al. 1995)
and the UIX three-body potential (Carlson et al. 1983;
Pudliner et al. 1995) terms. This formulation is ex-
tended to non-uniform nuclear matter at sub-nuclear
densities to compute the free energy density of unbound
nucleons that drip from heavy nuclei, as well as the bulk
energies of heavy nuclei. We also take into account the
dependence of iso-spin of each nucleus and temperature
on the saturation densities of heavy nuclei. In the mass
model of heavy nuclei, the coulomb- and surface-energy
shifts1 are also taken into account.
The shell energies of heavy nuclei, which represent

microscopical effects such as neutron- and proton-
magic numbers and pairing, are taken from the ex-
perimental and theoretical mass data (Audi et al. 2014;
Koura et al. 2005). The temperature and density depen-
dencies of the shell effects are also phenomenologically
taken into account. For the light nuclei, self- and Pauli
energy shifts in their mass at finite temperature and
density are included by following the method in Röpke
(2009); Typel et al. (2010).

3. ELECTRON AND POSITRON CAPTURES

We calculate weak interaction rates of nuclei which
are evaluated under the consistent treatment with the
nuclear abundances provided by the EOS2. The electron
capture rates for heavy nuclei are evaluated in the same
way as in Furusawa et al. (2017a). For some nuclei, we
use the reaction data in Langanke & Mart́ınez-Pinedo
(2000), Langanke et al. (2003), Oda et al. (1994) and
Fuller et al. (1982), which are based on the shell model
or its extension. It should be noted, however, that these
theoretical computations do not cover the full nuclei
which appear in CCSNe. We adopt an analytical for-
mula as a function of the Q-value (Langanke et al. 2003)
for the neutron-rich and/or heavy nuclei with the un-
available data3. In this formula, the finite temperature
and density effects on the nuclear masses for the Q-value
evaluations are included with being consistent with the
nuclear abundances on EOS tables. The detailed bal-

1 The energy shifts are due to uniformly-distributed dense elec-
trons, dripped nucleons and shape changes of heavy nuclei from
normal droplets to bubbles just below nuclear normal density.

2 Note that some minor interactions are ignored, for instance,
positron captures on heavy nuclei are not included in this study,
since they do not affect to CCSNe dynamics in both pre- and
post-bounce phases.

3 We refer the reader to Fig. 5 in Furusawa et al. (2017a) which
displays the corresponding data or formula to each nucleus in
(N,Z) plane.

ance relation gives the rate of neutrino absorption on
heavy nuclei.
As for light nuclei, we include the following weak in-

teractions in our simulation, referring to Fischer et al.
(2016),

(elpp) : νe +
2 H←→ e− + p+ p, (1)

(ponn) : ν̄e +
2 H←→ e+ + n+ n, (2)

(el2h) : νe + n+ n←→ e− +2 H, (3)

(po2h) : ν̄e + p+ p←→ e+ +2 H, (4)

(el3he) : νe +
3 H←→ e− +3 He, (5)

(po3h) : ν̄e +
3 He←→ e+ +3 H. (6)

For neutrino absorptions on deuterons of Eqs. (1) and (2),
we use the data of vacuum cross section (Nakamura et al.
2001). To account for the medium modification on
deuterons such as self- and Pauli-energy shifts, we
introduce the shifted neutrino injection energies as
E∗

ν = Eν + m∗
2H − m2H with masses of deuteron in

medium, m∗
2H, and in vacuum, m2H. The in-medium

mass is evaluated by the same mass model in the EOS.
As an example, the neutrino absorption rate of Eq. (1)
is expressed as

1/λ(Eν) = n2H

∫

dpe

(

dσν2H

dpe
(E∗

ν )

)

(1− fe(Ee)), (7)

where fe denotes the Fermi-Dirac distribution of elec-
trons. The rate of the electron/positron capture on
two nucleons forming a deuteron (leftward reactions of
Eqs. (1) and (2)) can be evaluated through the detailed
balance with the rate of the absorption.
Electron captures on deuterons of Eqs. (3) and (4)

can be estimated with the assumption that the matrix
elements of electron and positron captures are equivalent
to those of neutrino absorptions for Eqs. (1) and (2) as

dσe2H

dpν
∼

1

2

dσν2H

dpe
, (8)

where 1
2
comes from the difference in spin degrees of free-

dom between neutrino and electron. This is reasonable
approximation for CCSNe conditions, in which injection
energies of leptons are not greatly large and, hence, the
energy deposit to the relative motion between two nu-
cleons is negligible. Three bound nucleons, 3H and 3He,
interact with neutrinos via breakup or charge exchange,
the latter of which is dominant neutrino opacity source.
Therefore, we treat only the charge exchange reaction as
described in Eqs. (5) and (6), whose rates are calculated
by Eq. (11) in Fischer et al. (2016). Here, in-medium
effects on nuclear masses are not taken into account.
In this paper, we ignore other minor reactions involv-

ing deuterons such as pair processes and neutral-current

Nagakura et al. 2019

Hempel et al. 2011, Furusawa et al. 2011, Steiner et al. 2013 and Furusawa, H.N et al. 2017

Multi-nuclear treatments of EOS are mandatory for precise 
computations of nuclear-weak reaction rates 
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where òn and dòn are the value of energy at the nth cell center
and the width of the same cell, respectively.

In Figure 3, we show the radial profiles of the error function
rescaled by the number of energy mesh points Nò. It is seen that
the rescaled error functions for the different energy resolutions
almost coincide with one another, except for Nò= 20. This
indicates that the error function is inversely proportional to Nò,
roughly implying the first-order convergence. This is expected,
since the energy advection term is evaluated with a first-order
finite-difference scheme as described in Appendix A.

4.1.2. Angular Advection Tests

The greatest advantage of directly solving the Boltzmann
equation is that we are able to obtain information not only on
energy but also on the angular distribution in momentum space.
The direction of the neutrino momentum is specified by the
zenith and azimuth angles, (θν, fν; see Figure 1). Note that the
distribution function depends on θν alone in the spherical

symmetry assumed in this section. As a neutrino moves
nonradially, the zenith angle θν, which is measured from the
local radial direction, changes even in the flat spacetime. This
angular advection is shown schematically in Figure 4. The blue
curve is one of the geodesic curves along which the free
neutrino moves in the Schwarzschild spacetime. Note that it is
no longer a straight line due to gravity. In this example, the
neutrino moves outward and the zenith angle approaches
θν= 0, i.e., the outward radial direction, with the increasing
radius r. Since the geodesic curve is bent inward by gravity, the
approach is slower for the Schwarzschild spacetime than in the
flat spacetime. In this subsection, we test the capability of our
code to reproduce this angular advection.
The numerical setting is essentially the same as in the

previous test for the energy advection; we put the monochro-
matic neutrino source uniformly on a sphere with a certain
radius by setting f= 1 on an single energy bin there and f= 0

Figure 2. Neutrino distributions in energy space as a function of radius for the energy advection tests. The left and right panels show the results for the redshift and
blueshift tests, respectively. The arrows indicate the directions of the neutrino motions, and the white dashed curves show the trajectory of the massless particles
emitted from the source, truncated at the radius the massless particles reach at the time of the snapshot t = 2 × 10−4 s.

Figure 3. Radial profiles of the rescaled error function defined in the text.
Different colors indicate the number of energy mesh points: blue, green,
yellow, and red curves are for Nò = 20, 30, 40, and 60, respectively.

Figure 4. Schematic picture of the angular advection in momentum space angle
θν for Schwarzschild spacetime. The blue curve indicates the trajectory of a
massless particle emitted from the source located outside the photon sphere.
The blue arrows are the tangent vectors of the trajectory; the black arrows are
the radial vectors, with the dashed lines indicating the radial ray from the
coordinate center. The angle θν is the angle between these two vectors.
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Figure 30. Possible configurations of neutrino mass states as suggested by oscillations: the normal
(left) and the inverted (right) hierarchy. The flavour composition is shown as well [104, 105].

As we saw in section 3.4.2, the LSND experiment gave us an implication of ν̄µ → ν̄e

oscillation with "m2
LSND ≈ 1 eV2. However, noting that "m2

LSND # "m2
atm # "m2

solar, it is
easy to see that the three-flavour oscillation scheme discussed above cannot explain the LSND
data. This is because we have only two independent mass-squared differences with three
flavours and they are completely determined by the solar, atmospheric, reactor and accelerator
experiments. If the LSND results are confirmed by another experiment such as the MiniBooNE,
we will need some new physics beyond the standard three-flavour neutrino oscillation. One
possibility is to add an extra neutrino which mixes with standard neutrinos. It must not have a
charge of weak interaction because the LEP experiments imply very light degrees of freedom
which couple to Z-boson are not there [209]. Thus the extra neutrino must be sterile. We
will not discuss sterile neutrino further in this review. For further study on sterile neutrino,
see [83, 322] and references therein.

4. Neutrino oscillation in supernova

4.1. Overview

As we saw in section 2, core-collapse supernovae are powerful sources of neutrinos with
total energies of about 1053 erg. Since neutrinos are considered to dominate the dynamics
of supernova, they reflect the physical state deep inside the supernova, which cannot be
seen by electromagnetic waves. Neutrinos are emitted by the core and pass through the
mantle and envelope of the progenitor star. Since the interactions between matter and
neutrinos are extremely weak, one may expect that neutrinos bring no information about the
mantle and envelope. In fact, they do bring the information through the neutrino oscillation
because resonant oscillation discussed in section 3.3.2 depends on the density profile around
the resonance point. Thus neutrinos are also a useful tool to probe the outer structure of
the supernova, including the propagation of shock waves.

Feruglio et al. 2003

Neutrino oscillations

Credit:BBC

Normal Inverted

There are many experimental evidences that neutrinos 
can go through flavor conversion.

Neutrinos have at least three different masses.

Flavor eigenstates are different from mass eigenstates.

U represents
Pontecorvo–Maki–Nakagawa–Sakata matrix 

(PMNS matrix)

Flavor state

Mass state



29

Neutrino oscillation with a plane-wave picture

Neutrino shock acceleration in CCSN 97

Figure 10. Same as Fig. 9 but for the late post-bounce phase in failed CCSN.

where

U23 =




1 0 0
0 c23 s23

0 −s23 c23



,

U13 =




c13 0 s13 e−iδcp

0 1 0
−s13 eiδcp 0 c13



,

U12 =




c12 s12 0

−s12 c12 0
0 0 1



. (20)

cij and sij are cos θ ij and sin θ ij, respectively (θ ij denotes the neutrino
mixing angles), and δcp denotes the CP violation phase. Veµ and Vτµ

denote the matter potential with respect to νe and ντ , respectively,11

which can be written as

Veµ ∼
√

2GF ne, (21)

where ne denotes the number density of electron, and

Vτµ ∼ 10−4Veµ, (22)

for the case with ne ∼ np ∼ nn,12 where np and nn denotes the
number density of free proton and neutron, respectively (see also
Botella et al. 1987; Dighe & Smirnov 2000, for more complete
descriptions of Vτµ).

There are three independent eigenvalues ofH, which can be written
as

λk = −b

3
+ 2√

3

√
−p cos

(
1
3

arccos

(
3
√

3q

2p
√−p

)
+ 2π

3
k

)
, (23)

where k runs from 1 to 3. In the expression,

b = −
(
m∗2

1 + m∗2
2 + m∗2

3 + Vτµ + Veµ

)
, (24)

11In the expression, we subtracted the contribution of matter potential with
respect to νµ.
12It is a reasonable condition, since the electron fraction around the shock
radius is ∼0.5.

where

m∗2
i ≡ m2

i

2E
, (25)

and

p = −b2

3
+ c,

q = 2
27

b3 − 1
3
bc + d, (26)

where

c = m∗2
1 m∗2

2 + m∗2
1 m∗2

3 + m∗2
2 m∗2

3

+
(
(Hv)ee + (Hv)µµ

)
Vτµ

+
(
(Hv)µµ + (Hv)ττ

)
Veµ, (27)

d = −
{{

m∗2
1 m∗2

2 m∗2
3 + (Hv)ee(Hv)µµVτµ

+
[
(Hv)µµ(Hv)ττ + (Hv)µµVτµ − (Hv)τµ(Hv)µτ

]
Veµ

−(Hv)eµ(Hv)µeVτµ

}}
. (28)

For the case with normal mass hierarchy (m3 > m2 > m1), the
three eigenvalues in equation (23) correspond to the effective mass
eigenstates as,

λ0 : ν3,

λ1 : ν1,

λ2 : ν2, (29)

respectively. By taking the high density limit, we obtain

λ0 ∼ Veµ,

λ2 ∼ Vτµ, (30)

and then we obtain

νe ∼ ν3,

νµ ∼ ν1,

ντ ∼ ν2, (31)
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where ne denotes the number density of electron, and
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for the case with ne ∼ np ∼ nn,12 where np and nn denotes the
number density of free proton and neutron, respectively (see also
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11In the expression, we subtracted the contribution of matter potential with
respect to νµ.
12It is a reasonable condition, since the electron fraction around the shock
radius is ∼0.5.
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Figure 11. Neutrino spectra measured at the Earth in early post-bounce phase. The CCSN source distance is assumed to be 10 kpc. The left-hand and right-hand
panels show the spectra for neutrinos and antipartners, respectively. The colour represents the flavour of neutrinos. The flavour conversion is assumed as an
adiabatic MSW model with normal mass hierarchy (see Section 4.1.2). For the detail of our analytic formula, see the text and equations in Section 4.1.1.

Figure 12. Same as Fig. 11 but for the case with inverted mass hierarchy.

towards the low energy; hence, the spectrum results in monotoni-
cally decreasing with neutrino energy. The cumulative event counts
defined above are useful to assess the detectability of high energy
neutrinos; for instance, it enable us to determine the expected max-
imum energy of detected neutrinos on each detector. It corresponds
to the energy where the cumulative event counts reaches unity, i.e.
it is ∼110, ∼76, ∼84, and ∼65 MeV for HK, SK, DUNE, and
JUNO, respectively, in normal mass hierarchy; in inverted mass
hierarchy, it is ∼115, ∼83, ∼84, and ∼74 MeV in the same order of
detectors. It should be stressed that the expected maximum energies
are remarkably higher than those of thermal components (see dashed
lines in the same figure). We also note that the threshold energy for

thermal component is less sensitive to the source distance than that
for non-thermal one, which can be seen in Fig. 15. Regardless of the
neutrino mass hierarchy and detectors, >100 MeV thermal neutrinos
are not detectable (see dashed lines in the figure) unless the distance
to the CCSN source is very nearby !1 kpc. The insensitiveness to the
source distance reflects an important fact that the exponential decline
of the thermal spectrum of neutrinos is very steep. On the other hand,
the maximum energy depends more sensitive to the distance for the
non-thermal neutrinos; indeed, we find that all detectors are capable
of capturing neutrinos with >100 MeV if the source is located at !
4 kpc. It should be stressed that HK will detect >100 MeV neutrinos
for CCSNe with ! 10 kpc.
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Figure 10. Same as Fig. 9 but for the late post-bounce phase in failed CCSN.
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cij and sij are cos θ ij and sin θ ij, respectively (θ ij denotes the neutrino
mixing angles), and δcp denotes the CP violation phase. Veµ and Vτµ

denote the matter potential with respect to νe and ντ , respectively,11

which can be written as

Veµ ∼
√

2GF ne, (21)

where ne denotes the number density of electron, and

Vτµ ∼ 10−4Veµ, (22)

for the case with ne ∼ np ∼ nn,12 where np and nn denotes the
number density of free proton and neutron, respectively (see also
Botella et al. 1987; Dighe & Smirnov 2000, for more complete
descriptions of Vτµ).

There are three independent eigenvalues ofH, which can be written
as
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where k runs from 1 to 3. In the expression,

b = −
(
m∗2

1 + m∗2
2 + m∗2

3 + Vτµ + Veµ

)
, (24)

11In the expression, we subtracted the contribution of matter potential with
respect to νµ.
12It is a reasonable condition, since the electron fraction around the shock
radius is ∼0.5.
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For the case with normal mass hierarchy (m3 > m2 > m1), the
three eigenvalues in equation (23) correspond to the effective mass
eigenstates as,

λ0 : ν3,

λ1 : ν1,

λ2 : ν2, (29)

respectively. By taking the high density limit, we obtain

λ0 ∼ Veµ,

λ2 ∼ Vτµ, (30)

and then we obtain

νe ∼ ν3,

νµ ∼ ν1,

ντ ∼ ν2, (31)
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Figure 10. Same as Fig. 9 but for the late post-bounce phase in failed CCSN.
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Figure 10. Same as Fig. 9 but for the late post-bounce phase in failed CCSN.
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where ne denotes the number density of electron, and
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for the case with ne ∼ np ∼ nn,12 where np and nn denotes the
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Figure 11. Neutrino spectra measured at the Earth in early post-bounce phase. The CCSN source distance is assumed to be 10 kpc. The left-hand and right-hand
panels show the spectra for neutrinos and antipartners, respectively. The colour represents the flavour of neutrinos. The flavour conversion is assumed as an
adiabatic MSW model with normal mass hierarchy (see Section 4.1.2). For the detail of our analytic formula, see the text and equations in Section 4.1.1.

Figure 12. Same as Fig. 11 but for the case with inverted mass hierarchy.

towards the low energy; hence, the spectrum results in monotoni-
cally decreasing with neutrino energy. The cumulative event counts
defined above are useful to assess the detectability of high energy
neutrinos; for instance, it enable us to determine the expected max-
imum energy of detected neutrinos on each detector. It corresponds
to the energy where the cumulative event counts reaches unity, i.e.
it is ∼110, ∼76, ∼84, and ∼65 MeV for HK, SK, DUNE, and
JUNO, respectively, in normal mass hierarchy; in inverted mass
hierarchy, it is ∼115, ∼83, ∼84, and ∼74 MeV in the same order of
detectors. It should be stressed that the expected maximum energies
are remarkably higher than those of thermal components (see dashed
lines in the same figure). We also note that the threshold energy for

thermal component is less sensitive to the source distance than that
for non-thermal one, which can be seen in Fig. 15. Regardless of the
neutrino mass hierarchy and detectors, >100 MeV thermal neutrinos
are not detectable (see dashed lines in the figure) unless the distance
to the CCSN source is very nearby !1 kpc. The insensitiveness to the
source distance reflects an important fact that the exponential decline
of the thermal spectrum of neutrinos is very steep. On the other hand,
the maximum energy depends more sensitive to the distance for the
non-thermal neutrinos; indeed, we find that all detectors are capable
of capturing neutrinos with >100 MeV if the source is located at !
4 kpc. It should be stressed that HK will detect >100 MeV neutrinos
for CCSNe with ! 10 kpc.
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Figure 10. Same as Fig. 9 but for the late post-bounce phase in failed CCSN.
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cij and sij are cos θ ij and sin θ ij, respectively (θ ij denotes the neutrino
mixing angles), and δcp denotes the CP violation phase. Veµ and Vτµ

denote the matter potential with respect to νe and ντ , respectively,11
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where ne denotes the number density of electron, and
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11In the expression, we subtracted the contribution of matter potential with
respect to νµ.
12It is a reasonable condition, since the electron fraction around the shock
radius is ∼0.5.

where

m∗2
i ≡ m2

i

2E
, (25)

and

p = −b2

3
+ c,

q = 2
27

b3 − 1
3
bc + d, (26)

where

c = m∗2
1 m∗2

2 + m∗2
1 m∗2

3 + m∗2
2 m∗2

3

+
(
(Hv)ee + (Hv)µµ

)
Vτµ

+
(
(Hv)µµ + (Hv)ττ

)
Veµ, (27)

d = −
{{

m∗2
1 m∗2

2 m∗2
3 + (Hv)ee(Hv)µµVτµ

+
[
(Hv)µµ(Hv)ττ + (Hv)µµVτµ − (Hv)τµ(Hv)µτ

]
Veµ

−(Hv)eµ(Hv)µeVτµ

}}
. (28)

For the case with normal mass hierarchy (m3 > m2 > m1), the
three eigenvalues in equation (23) correspond to the effective mass
eigenstates as,

λ0 : ν3,

λ1 : ν1,

λ2 : ν2, (29)

respectively. By taking the high density limit, we obtain

λ0 ∼ Veµ,

λ2 ∼ Vτµ, (30)

and then we obtain

νe ∼ ν3,

νµ ∼ ν1,

ντ ∼ ν2, (31)
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Figure 11. Neutrino spectra measured at the Earth in early post-bounce phase. The CCSN source distance is assumed to be 10 kpc. The left-hand and right-hand
panels show the spectra for neutrinos and antipartners, respectively. The colour represents the flavour of neutrinos. The flavour conversion is assumed as an
adiabatic MSW model with normal mass hierarchy (see Section 4.1.2). For the detail of our analytic formula, see the text and equations in Section 4.1.1.

Figure 12. Same as Fig. 11 but for the case with inverted mass hierarchy.

towards the low energy; hence, the spectrum results in monotoni-
cally decreasing with neutrino energy. The cumulative event counts
defined above are useful to assess the detectability of high energy
neutrinos; for instance, it enable us to determine the expected max-
imum energy of detected neutrinos on each detector. It corresponds
to the energy where the cumulative event counts reaches unity, i.e.
it is ∼110, ∼76, ∼84, and ∼65 MeV for HK, SK, DUNE, and
JUNO, respectively, in normal mass hierarchy; in inverted mass
hierarchy, it is ∼115, ∼83, ∼84, and ∼74 MeV in the same order of
detectors. It should be stressed that the expected maximum energies
are remarkably higher than those of thermal components (see dashed
lines in the same figure). We also note that the threshold energy for

thermal component is less sensitive to the source distance than that
for non-thermal one, which can be seen in Fig. 15. Regardless of the
neutrino mass hierarchy and detectors, >100 MeV thermal neutrinos
are not detectable (see dashed lines in the figure) unless the distance
to the CCSN source is very nearby !1 kpc. The insensitiveness to the
source distance reflects an important fact that the exponential decline
of the thermal spectrum of neutrinos is very steep. On the other hand,
the maximum energy depends more sensitive to the distance for the
non-thermal neutrinos; indeed, we find that all detectors are capable
of capturing neutrinos with >100 MeV if the source is located at !
4 kpc. It should be stressed that HK will detect >100 MeV neutrinos
for CCSNe with ! 10 kpc.
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where |⌫`i (` = e, µ, ⌧) is the weak eigenstate of a neutrino created or absorbed in some

charged-current weak interaction (“flavour eigenstate”), and |⌫ii (i = 1, 2, 3) is the eigen-
state of the free-particle Hamiltonian (“mass eigenstate”) describing a neutrino’s kine-

matic behaviour – which is, however, not directly observable.

After applying the unitary constraints and removing unphysical phases, the matrix

elements of U ⌘ (U`i) and of its inverse U�1
= U † ⌘ (U⇤

`i)
T
can be parametrized by three

rotation angles (✓12, ✓13, ✓23) and one complex phase �, thus introducing the possibility

of CP violation in the lepton sector. Take care when a neutrino |⌫`i couples as an adjoint

spinor to the weak interaction vertex: its corresponding coupling factor (i.e. the matrix

element U`i or U⇤
`i) will appear as the complex conjugate [2].

A neutrino is produced weakly as a well-defined flavour state, but manifests itself as

a coherent linear superposition of the three mass eigenstates:

 `(0, 0) ⌘ |⌫`i =
3X

i=1

U⇤
`i |⌫ii (2)

Each |⌫ii’s momentum pi and energy Ei =
p
m2

i + p2i are separately determined by

energy-momentum conservation in the production process. This fact is exploited by preci-

sion experiments for measuring the neutrino masses [1].
2
An example is the 2-body decay

⇡+ ! ⌫µ µ+
[1, 4]: if the ⇡ mass, the µ mass and the µ momentum in the ⇡ rest frame

are known with su�ciently high precision, then the neutrino mass squared is kinemati-

cally determined. Such observation causes the superposition to collapse into one specific

mass eigenstate |⌫ii with probability |Uµi|2; the measurements yield only an incoherently

averaged muon-based e↵ective mass squared
P3

i=1 |Uµi|2 m2
i .

2 Plane-wave model

In absence of such an observation, the wave function  ` will propagate by evolving as

coherently superposed plane-waves along e.g. the x-direction:3

 `(t, x) =
3X

i=1

U⇤
`i |⌫ii e�i�i , phase �i = Ei t� pi x (3)

with di↵erent phases �i for each of its components |⌫ii. The interfering phases will steadily
shift apart – this dispersion is the origin of the oscillation.

Note that for any plane-wave, the phase velocity ⌘ Ei/pi = 1/�i � 1; the group

velocity ⌘ dEi/dpi = pi/Ei = �i  1 is equal to the particle’s velocity in the lab frame.

For a wave-packet, �i is the velocity of the packet’s centre.

The neutrino will eventually be detected at a distance x = L by some charged-current

weak interaction, and its absorbed flavour `⇤ can be identified. Therefore, the mass eigen-

states |⌫ii of eq. (3) have to be re-expressed in terms of flavour eigenstates |⌫`0i while

keeping into account the evolved individual phases �i:

 `(t, x) =
⌧X

`0=e

 
3X

i=1

U⇤
`i U`0ie

�i�i

!
|⌫`0i (4)

2 So far, only upper limits can be derived from the e↵ective masses squared [4].
3 Notwithstanding any uncertainties at production, free-particle propagation is always on-shell [7].

Assuming vacuum only, no matter e↵ects like MSW need to be taken into account.
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2

Boltzmann transport becomes a 
reasonable approximation.
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Figure 9. Neutrino spectra at the CCSN source modelled by our analytic formula (equation 12). The left-hand and right-hand panel correspond to νµ and ντ ,
respectively. The parameters are chosen so as to reproduce our Monte Carlo simulations for the early post-bounce phase (see the text for more details). The
solid lines represent the sum of thermal- and non-thermal component of neutrino spectrum. The dashed lines denote those of the thermal component. For νµ,
the spectrum is cut at the energy of muon rest mass (106 MeV) where we draw a thin vertical line in the left-hand panel.

post-bounce phase. Fig. 10 portrays the resultant spectrum of heavy
leptonic neutrinos for the late post-bounce phase in failed CCSN.

We must mention several caveats regarding our choice of the
parameters. Although the choice was made based on the emergent
spectra obtained by our Monte Carlo simulations, there remain sev-
eral uncertainties, indicating that the sensitivity of the detectability
to the parameters needs to be investigated. As we shall show below,
however, that there also remain large uncertainties in neutrino cross-
sections with detector materials, which prevents the quantitative
arguments; hence, our discussions are restricted to a qualitative level.
We postpone the detailed study of parameter dependence in future
until we remove or at least reduce the major uncertainties for the
estimation.

4.1.2 Neutrino oscillation

As we have described in Section 2, the neutrino shock acceleration
breaks the degeneracy of νµ and ντ in the energy of E > Mu, implying
that the treatment of three flavour of neutrinos is indispensable.
Three different flavours of neutrinos change into each other during
flight due to neutrino oscillation, which should be taken into account
to consider the event count in terrestrial detectors. In this paper,
we adopt a simple oscillation model but frequently used in the
literature: adiabatic Mikheyev–Smirnov–Wolfenstein (MSW) model
for normal and inverted mass hierarchies. Below, we describe the
essence of the model.

The CCSN core is the place where the matter potential of the
neutrino oscillation Hamiltonian dominates the vacuum one. The
matter potential is not identical among different flavours; for instance,
charged-current interactions in νe make the matter potential higher
than that for other heavy leptonic neutrinos. We also note that the
radiative corrections in matter reactions depend on the mass of
leptons (Botella, Lim & Marciano 1987), indicating that νµ and
ντ also feel the different matter potential. Although the radiative

correction is much smaller than the charged-current interactions,
the difference plays an important role to distinguish νµ and ντ ,
and in particular, the effect overwhelms the vacuum potential if the
matter density (ρ) becomes higher than ∼107–108 g cm−3 (Botella
et al. 1987; Dighe & Smirnov 2000). We find that the neutrino
shock acceleration occurs at the place where the matter density is
comparable or higher than the threshold; hence, we assume that the
three flavours of neutrinos are pinned at each three different mass
eigenstate in this study.

To see the relation between the flavour- and effective mass
eigenstate of neutrinos in matter, we need to compute the eigenvalues
of the oscillation Hamiltonian. For neutrinos, the Hamiltonian in the
flavour basis can be written as,

H = Hv + Hm, (16)

where

Hv = 1
2E

U




m2

1 0 0
0 m2

2 0
0 0 m2

3



U†, (17)

and

Hm =




Veµ 0 0
0 0 0
0 0 Vτµ



. (18)

In the expressions, mi (i = 1, 2, 3) denotes the three independent mass
of neutrinos. U represents the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) matrix,10

U = U23U13U12, (19)

10We ignore the two Majorana phases in the PMNS matrix, since they do not
affect neutrino oscillations (Bilenky, Hošek & Petcov 1980; Langacker et al.
1987).
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1987).

MNRAS 502, 89–107 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/1/89/6070645 by N
ational Astronom

ical O
bservatory Japan user on 09 O

ctober 2021

1. Refractions by self-interactions induce neutrino flavor conversions, which is analogy 
to matter effects (e.g., MSW resonance).

2. The oscillation timescale is much shorter than the global scale of CCSN/BNSM. 

3. Collective neutrino oscillation induced by neutrino-self interactions commonly 
occurs in CCSNe and BNSM environments.

Pantalone 1992
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FIG. 1. Comparison of the scales of all the included collision
rates and di↵erent potentials in the Hamiltonian for neutrino
energy E = 21 MeV in the transport equation [Eqs. (1) and
(2)] for the background snapshot at tpb ⇡ 247 ms (our Model
II) from the CCSN simulation. Also shown is (�r)�1 with the
radial grid size �r = 3 m adopted in our simulations. The
black dotted curve shows the attenuated potential V⌫⌫ (see
Sec. II B 2 and Table II) while the blue dotted curve shows
the parametrized matter potential Vmat (see Sec. VD). We
take �m2

atm = 2.3 ⇥ 10�3 eV2 and �m2
� = 8 ⇥ 10�5 eV2 cor-

responding to the measured values in atmospheric and solar
neutrino experiments respectively.

this work, we take the approach of introducing artificial
attenuations to some of the rates as follows.

First, we scale down all elements in neutrino self-
induced term H⌫⌫ by multiplying them with an atten-
uating factor [76],

a⌫⌫(r) =
a1

1 + e(a2�r)/a3
, (12)

where a1, a2, and a3 are parameters, for which we take
di↵erent values for di↵erent snapshot models (see Ta-
ble II). For instance, adopting a1 = 10�3, a2 = 35 km,
and a3 = 3.0 km for the snapshot shown in Fig. 1 results
in attenuated V⌫⌫ (black dotted curve) smaller than the
value of (�r)�1, when taking Nr = 25000 uniformly dis-
tributed radial grids. This form attenuates V⌫⌫ more at
smaller radii as the neutrino number densities are signifi-
cantly higher. Notice that we also make sure our choice of
a⌫⌫(r) always maintains the hierarchy between V⌫⌫ and
other collisional terms for most relevant neutrino ener-

gies. For example, the attenuated V⌫⌫ shown in Fig. 1
remains larger than the collisional rates by at least a fac-
tor of 10–100 for neutrino energy of 21 MeV.
Second, for the matter potential, the high density

around the neutrino sphere also leads to too large value
of Vmat to be directly included in our simulation without
modifications (see Fig. 1). Thus, for models that we in-
clude Hmat and H̄mat, we instead adopt a parametrized
function to explore the e↵ect due to the presence of an
inhomogeneous matter term (see Sec. VD).
Third, the collisional rates for neutrinos with high en-

ergy E & 90 MeV can exceed (�r)�1. To avoid that, we
also apply attenuation functions

aEA(E, vr) =

"
1 +

�
2

EA,max
(E)

a
2
4

#�1/2

, (13)

to all emissivities and opacities in EA and

aNNS(E, vr) =


1 +

�
2

NNS
(E)

a
2
5

��1/2

, (14)

to the scattering kernels in NNS, where �EA,max(E) is
the maximal between je(E)+�e(E) and jµ(E)+�µ(E),
a4 and a5 are parametric saturation rates. We adopt val-
ues of a4 and a5 close to (�r)�1 to make sure all rates
are smaller than (�r)�1 for all energies. Note that for
neutrinos with energy . 90 MeV, their rates are practi-
cally not attenuated since �EA,max/a4 and �NNS/a5 are
much smaller than 1. For those with E & 90 MeV, they
remain strongly trapped during our simulation duration.

3. Boundary and initial conditions

We numerically solve the QKE under spherical sym-
metry within a radial range between an inner boundary
ri.b. = 10 km and an outer boundary ro.b. = 85 km.
Right above the inner boundary, we set up a region with
a length ⇠ li.b. and decaying width wi.b. wherein the
EA rates for all energies are artificially increased by the
amounts �ji(E) and ��i(E) as follows (i = e, µ),

�ji(E) =
Nr/L

1 + e(r�ri.b.�li.b.)/wi.b.

%eq,ii(E)

%FO(E) + %eq,ii(E)
,

��i(E) =
Nr/L

1 + e(r�ri.b.�li.b.)/wi.b.

%FO(E)

%FO(E) + %eq,ii(E)
,

(15)

before we apply the attenuation factor described in the
above subsection, such that neutrinos in this zone reach
equilibrium state %eq,ii determined by the local temper-
ature and the equilibrium neutrino chemical potential

µ
(eq)

⌫ = µe + µp � µn within ⇠ 0.5 ms. The purpose
of having this equilibrium zone is mainly to prevent the
artificially fast leakage of ⌫̄e below ⇠ 10 MeV and ⌫µ be-
low ⇠ 20 MeV due to the lack of their main production

Xiong et al. 2023
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In the expression, f and f̄ denote the density matrix
of neutrinos and anti-neutrinos, respectively; xµ and p

µ

are spaticetime coordinates and the four-momentum of
neutrinos (and anti-neutrinos); uµ and n

µ represent the
four-velocity of fluid and the unit vector normal to the
spatial hypersurface of constant time, respectively; Scol

and S̄col are the collision terms measured at the fluid rest
frame; H and H̄ denote the Hamiltonian operators which
can be decomposed as

(�)

H =
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H vac +
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Hmat +
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H ⌫⌫ , (2)

where

H̄vac = H
⇤
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H̄mat = �H
⇤
mat,

H̄⌫⌫ = �H
⇤
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(3)

Hvac denotes the vacuum Hamiltonian with the ex-
pression in the neutrino-flavor eigenstate, which can be
written as

Hvac =
1
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1 0 0
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0 0 m
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3

3

5U
†
, (4)

where ⌫ = �p
µ
nµ = p

0
↵; ↵ denotes the lapse func-

tion; mi denotes the mass of neutrinos; U denotes
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
The matter potential Hmat can be written as

Hmat = D
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4
Ve 0 0
0 Vµ 0
0 0 V⌧

3

5 , (5)
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where D = (�p
µ
uµ)/⌫ denotes the Doppler factor be-

tween the laboratory frame and the fluid-rest frame (see
[1, 2]); The leading order of V` can be written as

V` ⇠
p
2GF (n`� � n`+), (6)

where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. We note,
however, that µ and ⌧ do not appear in CCSN (but see
[3, 4] for interesting possibilities of µ appearance in CCSN
core); hence the next order correction, radiative correc-
tion, should be taken into account [5, 6], which would be
important for the baryon density above ⇠ 108g/cm3. Fi-
nally, H⌫⌫ represents the self-interaction potential, which
can be written as

H⌫⌫ =
p
2GF

Z
d
3
q
0

(2⇡)3
(1�

3X

i=1

`
0
(i)`(i))(f(q

0)� f̄
⇤(q0)),

(7)
where d

3
q denotes the momentum space volume of neu-

trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,

`(3) = sin ✓⌫ sin �⌫ ,

(8)

where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.

1
In some approaches, it may be useful to define Hamiltonian op-

erators on the fluid-rest frame. They are related to those define

in laboratory frame as,

H = DH
F
. (9)

The self-interaction potential at the fluid rest frame can be writ-

ten as

H
F
⌫⌫ =

p
2GF

Z
d
3
q
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(1�
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(q

0F
)�f̄
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)), (10)

where f
F

denotes the density matrix of neutrinos measured at

the fluid rest frame. In the expression, the directional cosines `
F
(i)

are also defined on the fluid rest frame, i.e., they are measured

from ê(1). The ê(1) can be obtained by following prescription in

[2] (see Eqs.14-20 in the paper).
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of neutrinos and anti-neutrinos, respectively; xµ and p
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are spaticetime coordinates and the four-momentum of
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Hvac denotes the vacuum Hamiltonian with the ex-
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the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
The matter potential Hmat can be written as

Hmat = D
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tween the laboratory frame and the fluid-rest frame (see
[1, 2]); The leading order of V` can be written as
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where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. We note,
however, that µ and ⌧ do not appear in CCSN (but see
[3, 4] for interesting possibilities of µ appearance in CCSN
core); hence the next order correction, radiative correc-
tion, should be taken into account [5, 6], which would be
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nally, H⌫⌫ represents the self-interaction potential, which
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where d

3
q denotes the momentum space volume of neu-

trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,

`(3) = sin ✓⌫ sin �⌫ ,

(9)

where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.

1
In some approaches, it may be useful to define Hamiltonian op-

erators on the fluid-rest frame. They are related to those define

in laboratory frame as,

H = DH
F
. (10)
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conversions may induce sharp spectral swapping in energy
direction. These facts suggest that high numerical resolu-
tions in the energy direction may be still necessary even
reduction of the Hamiltonian potential. The resolution study
would help us to exclude spurious evolution of flavor
conversion.
It is worthy to note that the similar approach can be seen

in other fields; for instance, ion-to-electron mass ratio is
frequently reduced in particle-in-cell simulations of plasma
physics to save computational time.2 Realistic FFC features
(i.e., without reduction of neutrino number density) can be
obtained by increasing the neutrino number density, and the
resolutions in neutrino phase space and the size of
computational domain are controlled in accordance with
computational power. Following the above approach, we
carried out a time-dependent global simulations of FFC; the
results are reported in a separate paper [82]. We confine the
scope of this paper to describing philosophy, design, and
numerical aspects of GRQKNT.
This paper is organized as follows. We describe the basic

equation and the numerical formalism in Sec. II. We
encapsulate the detail of each numerical module into each
section: transport module (in Sec. III), collision term (in
Sec. IV), and oscillation module (in Sec. V). Finally, we
summarize and conclude in Sec. VI. We use the unit with
c ¼ G ¼ ℏ ¼ 1, where c, G, and ℏ are the light speed, the
gravitational constant, and the reduced Planck constant,
respectively. We use the metric signature of −þþþ.

II. BASIC EQUATIONS

In GRQKNT code, we solve general relativistic mean-
field quantum kinetic equation (QKE), which is written as
(see also [83])

pμ ∂ f
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dτ
∂ f
ð−Þ

∂pi ¼ −pμuμ S
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ð−Þ
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In the expression, we use the same convention as [84].3 f
and f̄ denote the density matrix of neutrinos and antineu-
trinos, respectively; xμ and pμ are spacetime coordinates
and the four-momentum of neutrinos (and antineutrinos);
uμ and nμ represent the four-velocity of fluid and the unit
vector normal to the spatial hypersurface of constant time,
respectively; S (S̄) represents the collision terms measured

at the fluid rest frame; H (H̄) denotes the Hamiltonian
operator associated with neutrino-flavor conversion. The
Hamiltonian is composed of three compositions,

H
ð−Þ

¼ H
ð−Þ

vac þ H
ð−Þ

mat þ H
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νν; ð2Þ

where

H̄vac ¼ H'
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H̄mat ¼ −H'
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H̄νν ¼ −H'
νν: ð3Þ

Hvac denotes the vacuum Hamiltonian with the
expression in the neutrino-flavor eigenstate, which can
be written as
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where ν ¼ −pμnμ ¼ p0α; α denotes the lapse function
associated with spacetime foliation (3þ 1 formalism of
curved spacetime); mi denotes the mass of neutrinos; U
denotes the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix. The matter potential Hmat can be written as

Hmat ¼ D

2

664
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0 Vμ 0

0 0 Vτ þ Vμτ

3

775; ð5Þ

whereD ¼ ð−pμuμÞ=ν denotes the effective Doppler factor
between the laboratory frame and the fluid-rest frame, i.e.,
representing the Lorentz boost between n and u under local
flatness (see [72,74] for more details). The leading order of
Vl can be written as

Vl ¼
ffiffiffi
2

p
GFðnl− − nlþÞ; ð6Þ

where GF and nl represent the Fermi constant and the
number density of charged leptons ðl ¼ e; μ; τÞ, respec-
tively. As a default set, we assume that on-shell heavy
leptons (μ and τ) do not appear; i.e., Vμ and Vτ are set to be
zero. It should be mentioned, however, that Vμ may not
always be zero, since on-shell muons would appear in the
vicinity of (or inside) neutrino star [see, e.g., [85,86] ]. Vμτ

represents, on the other hand, the radiative correction of
neutral current [1,87], which is a leading order to distin-
guish νμ and ντ in cases with Vμ ¼ Vτ ¼ 0. Following [1],
Vμτ can be computed as

2It is worthy to note that nowadays the increased computa-
tional resources allow PIC simulations with real mass ratio
(see, e.g., [81]).

3This is also the same convention that used in [83], although
there is a typo in the right-hand side of Eq. (9) in the paper
(computing self-interaction potentials). f̄0 needs to be replaced to
f̄'0, which is confirmed with one of the authors (Sherwood
Richers, private communication). We also note that our con-
vention for f̄ corresponds to ρ̄' in [25] [see, e.g., Eq. (A2) in in
[25]], which has been frequently used in the literature.
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Rich flavor-conversion phenomena 
driven by neutrino-neutrino self-interactions

- Slow-mode

- Fast-mode (FFC)

- Collisional instability

- Matter-neutrino resonance

・Energy-dependent flavor conversion occurs. 
・The frequency of the flavor conversion is proportional to  

(Duan et al. 2010)
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We study the fully nonlinear fast flavor evolution of neutrinos in 1+1 dimensions. Our numerical
analysis shows that at late time the system reaches an approximately steady state. Using the steady
state approximation we analytically show that the spatial variation of the polarization vectors is
given by their precession around a common axis, which itself has a motion reminiscent of a gyroscopic
pendulum. We then show that the steady state solution to the equations of motion cannot be
separated in position and velocity, that is the motion is not collective in the usual sense. However,
the fast evolution allows spectral-swap-like dynamics leading to partial decoherence over a range
of velocities, constrained by conservation of lepton number(s). Finally, we numerically show that
at late time the transverse components of the polarization vectors become randomly oriented at
di�erent spatial locations for any velocity mode and lepton asymmetry.

I. INTRODUCTION

Neutrinos emitted by stars present valuable opportuni-
ties to study neutrino properties [1]. While solar neutri-
nos have famously helped zero in on the large mixing an-
gle scenario, neutrinos from supernovae may yet provide
a unique opportunity to study neutrino-neutrino interac-
tions – a crucial piece of the standard model of particle
physics that has not been tested directly.

The rate of neutrino oscillations is typically dictated
by the vacuum oscillation frequency, Ê, and the matter
potential, ⁄ [2–4]. Until the early 2000s, it was believed
that this paradigm was su�cient to describe neutrino
oscillations inside supernovae as well [5]. At that time,
the outstanding problem of the field appeared to be to
understand the e�ect of fluctuations in the background
matter density [6–8].

Following the pioneering papers by Pantaleone [9, 10],
however, it became clear that the issue is more sub-
tle [11, 12]. Owing to the large neutrino density, even
free-streaming neutrinos experience significant forward-
scattering o� other neutrinos. Such scattering leads to
a self-interaction potential, µ ∫ Ê, that is proportional
to the neutrino density and can dominate over the vac-
uum term. As a result, a gamut of new collective flavor
transformations can occur inside supernovae.

The so-called “slow” collective e�ects, with an intrinsic
rate ≥

Ô
Êµ, are already faster than usual neutrino oscil-

lations. These lead to a variety of new phenomena, e.g.,
synchronization [11], bipolar oscillations [12–16], spectral
swaps [17–20], three-flavor e�ects [21–24], multi-angle ef-
fects [25–28], decoherence [29–32], and linear instabili-
ties [33], including those that break symmetries of direc-
tion [34, 35], space [36, 37], and time [38, 39]. Related de-
velopments, that followed the influential papers by Duan,
Fuller, Carslon and Qian, and their phenomenological
consequences have been reviewed in Refs. [40–43]; see also
references therein.

ú soumya.bhattacharyya@theory.tifr.res.in
† bdasgupta@theory.tifr.res.in; orcid.org/0000-0001-6714-0014

Ray Sawyer pointed out that much more rapid “fast”
flavor conversions can take place [44–47]. These have
a frequency ≥ µ, and might have a much more drastic
e�ect for neutrino physics [48–68] as well as supernova
astrophysics [69–75]. The criterion for fast conversions
to occur appears to be related to that for slow conver-
sions, i.e., the di�erence of neutrino and antineutrino flux
distributions in the momentum space must have a zero
crossing [20], though a more detailed understanding still
remains wanting.

The flavor evolution of a dense neutrino gas is governed
by a large number of coupled nonlinear partial di�eren-
tial equations. These are almost always very di�cult to
solve. Although linearized stability analysis is useful to
ascertain if and when fast conversion takes place, it can-
not directly answer the question – what is the impact
of fast flavor conversion on observable neutrino fluxes or
the explosion mechanism? This is a significantly harder
problem that requires understanding the nature of the
solution in the nonlinear regime. A step in this direction
was taken by Sen and one of the present authors [51],
where the flavor evolution of a 4-beam model in 0+1 di-
mension was understood in the fully nonlinear regime.

In this work, we take another step in the same di-
rection. We consider a dense neutrino gas in 1+1 di-
mensions, with a spectrum of velocity modes, and ana-
lyze the coupled flavor evolution of the neutrino system
into the nonlinear regime. Our numerical analysis sug-
gests that the system reaches an approximately steady
state at late time. In the steady state approximation,
we analytically show that the spatial variation of the po-
larization vectors is given by their precession around a
gyrating flavor pendulum with a fixed length, spin, and
energy, and the solution is not collective. The polariza-
tion vectors, when averaged over space, however, exhibit
complete (partial) decoherence for zero (nonzero) lepton
asymmetry. For partial decoherence, the non-vanishing
range of velocity modes is dictated by conservation of
lepton numbers. This kinematic decoherence stems from
randomization of the transverse components. Numerical
examples confirm these analytical insights.
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Time-dependent global simulations of fast neutrino-flavor conversion
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I. INTRODUCTION

In the hot and dense medium arising in core-collapse
supernova (CCSN) and binary neutron star merger
(BNSM), neutrinos play a key role in transporting en-
ergy, momentum, and lepton-number. Once neutrinos
are produced by weak interactions, they propagate across
di↵erent fluid elements. A fraction of the neutrinos ex-
perience scatterings with or reabosrption onto matter,
that would drive explosions in CCSN, and launch disk-
outflows in the remnant of BNSM. The neutrino emis-
sion and absorption can also change the electron-fraction
that has a direct influence on the chemical composition of
matter, highlighting the importance of accurate models
of neutrino radiation field.

! =
�m2

2E⌫
,

� =
p
2GFne,

µ =
p
2GFn⌫ ,

(1)

Decades of progress on numerical simulations of CCSN
and BNSM have improved our understanding of rolls of
neutrinos on fluid dynamics and their observable conse-
quences. Most of the numerical models, however, su↵er
from large uncertainties in neutrinos quantum kinetics.
In dense neutrino environments, the neutrino-neutrino
self-interactions give rise to reflactive e↵ects, potentially
leading to large neutrino-flavor conversion (see, e.g., [1–
3]). Since the self-interaction is essentially a non-linear
process, a number of simplifying assumptions need to be
imposed to handle the problem analytically. Although
numerical simulations is a powerful approach in study-
ing the non-linear phenomenon, they are not yet at a
stage to provide reliable astrophysical consequences of
the flavor conversion. In fact, the spatial wavelength of
flavor conversion becomes several orders of magnitude
smaller than typical one of CCSN and BNSM, exhibit-
ing requirements of currently unfeasible comutational re-
sources. Notewithstanding, we need to accomodate neu-
trino quantum kinetics in theoretical models one way or
another. In fact, recent theoretical studies suggested that

fast neutrino-flavor conversion, one of the collective neu-
trino oscillation modes, ubiquitously occur in CCSN [4–
13] and BNSM [14–18] environments.
not important in CCSN [19, 20] and BNSM [21] dy-

namics
The non-linear properties of neutrino quantum kinetics

have been investigated in various approaches. One of the
common strategy is neutrino bulb model[19, 20, 22–29]1

The most common strategy is to make use of either
steady-state or local approximations, making the prob-
lem numerically tractable.
stationary and homogeneous solutions [30]
line-beamed model [31–33]
homogeneous dynamical [34–39]
inhomogeneous dynamical [40–51]
numerical codes [52, 53]
a long and arduous journey.
As pointed out by [54, 55], collective neutrino oscil-

lations naturally break their own temporal stationality
in CCSN environments, suggesting that we would dis-
card potentially important features of quantum kinetics
in steady-state models.
Multi-azimuthal-angle instability [56, 57]
Self-induced decoherence [58]
GR e↵ects [26]
Matter neutrino reasonances [59–61]
Global simulations (under-resolved and short-time)

[21, 62]

II. METHODS AND MODELS
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Vacuum:
Matter:
Self-int:

・Collective neutrino oscillation in the limit of ω → 0.
・The frequency of the flavor conversion is proportional to
・Anisotropy of neutrino angular distributions drives the fast flavor-conversion. 

(Sawyer 2005)
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(Johns 2021)

・Asymmetries of matter interactions between neutrinos and anti-neutrinos
drive flavor conversion.  
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FIG. 2. The critical electron fraction Y crit
e below which the

system is predicted to be collisionally unstable, shown as a
function of n⌫x/n⌫̄e and n⌫̄e/n⌫e and assuming n⌫x = n⌫̄x .
Since Ye . 0.2 is typical in the neutrino decoupling region,
the majority of this parameter space is unstable.

support the same solutions, assuming the initial state is
seeded with flavor coherence. As a matter of fact, such
a system does enter into the decay mode, but never into
the growing one. From the vantage point of Eq. (5), the
significance of the oscillation terms is that they cause the
polarization vectors to wander through di↵erent config-
urations in flavor space until chancing upon the growing
solution. Fast instabilities, by way of contrast, really can
arise with ! = 0 as long as coherence is seeded. The µ

terms serve double duty in those cases, prompting the
exploration of flavor space and driving the instabilities
themselves.

Linear stability analysis provides a complementary
perspective. For this we return to the density matri-
ces. Linearizing in o↵-diagonal elements and adopting a
matter-suppressed mixing angle ✓m

⇠= 0,
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Seeking collective modes, we now take ⇢ex = Qe
�i⌦t and

⇢̄ex = Q̄e
�i⌦t. The dispersion relation results from plug-

ging these expressions into Eqs. (13) and dispensing with
Q and Q̄. It can be solved analytically:

Im ⌦ ⇠= ±
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µSp
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�+ �̄

2
, (14)

where S = |S(0)| = n⌫e � n⌫x + n⌫̄e � n⌫̄x and D =
|D(0)| = n⌫e � n⌫x � n⌫̄e + n⌫̄x . (S and D are assumed

FIG. 3. Collisionally and fast-unstable evolution in
an anisotropic calculation: n⌫e (thick black curve), n⌫̄e

(medium), n⌫x (thin), and neutrino coherence density |PT |/2
(teal). The very thin curves show the results when � and �̄
are artificially set to the average of their actual values (hence
� = �̄). The rapid oscillatory motion is the swinging of the
fast pendulum [21]. No conversion would be visible if the
system were stable to fast flavor conversion (FFC).

to point along z initially, but the formulas are easily
adapted.) If µD � 2

p
!µS, which is usually expected

of the setting we have in mind, then the instability crite-
rion coincides with Eq. (6). If µD < 2

p
!µS and ! < 0

(indicating the inverted hierarchy), then Eq. (14) is in-
validated by intervention of the bipolar instability.
Up to this point the analysis has assumed monochro-

maticity, isotropy, and homogeneity. The first of these
is justified by the high neutrino density. Though not
presented here, numerical calculations with multiple en-
ergies confirm that collisional instability a↵ects them col-
lectively.
Calculations also confirm the presence of collisionally

unstable evolution in anisotropic set-ups. An interest-
ing case is one where collisional and fast instabilities are
present together. Fig. 3 shows the results of such a cal-
culation. The parameters are the same as those used
in making Fig. 1 except that n⌫e has been decreased to
2.6⇥ 1033 cm�3 and the angular distributions have been
made anisotropic, so as to make the system unstable to
fast oscillations. As with the other parameters, the an-
gular distributions are chosen to be representative of real
conditions in a supernova. They are specified by the flux
factors (i.e., the ratios of energy flux to energy density)
f⌫e = 0.05, f⌫̄e = 0.10, and f⌫x = f⌫̄x = 0.15. Radiative
pressures are prescribed using M1 closure [22].
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of the collisional instability on a much shorter timescale
than was seen in Fig. 1. Furthermore, significantly
greater flavor transformation occurs when � 6= �̄ than
when � = �̄, testifying to the fact that the results
observed in Fig. 3 are not simply caused by decoher-
ence. In a more realistic setting, collisional relaxation

Γ: Matter-interaction rate

・The resonance potentially occur in BNSM/Collapsar environment (but not in CCSN).
・Essentially the same mechanism as MSW resonance.
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I. INTRODUCTION

In the hot and dense medium arising in core-collapse
supernova (CCSN) and binary neutron star merger
(BNSM), neutrinos play a key role in transporting en-
ergy, momentum, and lepton-number. Once neutrinos
are produced by weak interactions, they propagate across
di↵erent fluid elements. A fraction of the neutrinos ex-
perience scatterings with or reabosrption onto matter,
that would drive explosions in CCSN, and launch disk-
outflows in the remnant of BNSM. The neutrino emis-
sion and absorption can also change the electron-fraction
that has a direct influence on the chemical composition of
matter, highlighting the importance of accurate models
of neutrino radiation field.

! =
�m2

2E⌫
,

� =
p
2GFne,

µ =
p
2GFn⌫ ,

|�+ µ| ⇠ |!|

(1)

Decades of progress on numerical simulations of CCSN
and BNSM have improved our understanding of rolls of
neutrinos on fluid dynamics and their observable conse-
quences. Most of the numerical models, however, su↵er
from large uncertainties in neutrinos quantum kinetics.
In dense neutrino environments, the neutrino-neutrino
self-interactions give rise to reflactive e↵ects, potentially
leading to large neutrino-flavor conversion (see, e.g., [1–
3]). Since the self-interaction is essentially a non-linear
process, a number of simplifying assumptions need to be
imposed to handle the problem analytically. Although
numerical simulations is a powerful approach in study-
ing the non-linear phenomenon, they are not yet at a
stage to provide reliable astrophysical consequences of
the flavor conversion. In fact, the spatial wavelength of
flavor conversion becomes several orders of magnitude
smaller than typical one of CCSN and BNSM, exhibit-
ing requirements of currently unfeasible comutational re-
sources. Notewithstanding, we need to accomodate neu-
trino quantum kinetics in theoretical models one way or
another. In fact, recent theoretical studies suggested that

fast neutrino-flavor conversion, one of the collective neu-
trino oscillation modes, ubiquitously occur in CCSN [4–
13] and BNSM [14–18] environments.
not important in CCSN [19, 20] and BNSM [21] dy-

namics
The non-linear properties of neutrino quantum kinetics

have been investigated in various approaches. One of the
common strategy is neutrino bulb model[19, 20, 22–29]1

The most common strategy is to make use of either
steady-state or local approximations, making the prob-
lem numerically tractable.
stationary and homogeneous solutions [30]
line-beamed model [31–33]
homogeneous dynamical [34–39]
inhomogeneous dynamical [40–51]
numerical codes [52, 53]
a long and arduous journey.
As pointed out by [54, 55], collective neutrino oscil-

lations naturally break their own temporal stationality
in CCSN environments, suggesting that we would dis-
card potentially important features of quantum kinetics
in steady-state models.
Multi-azimuthal-angle instability [56, 57]
Self-induced decoherence [58]
GR e↵ects [26]
Matter neutrino reasonances [59–61]
Global simulations (under-resolved and short-time)

[21, 62]
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approximations in the supernova core (but see Bollig et al.
2017). Following the common practice, we divide the integral
in momentum space6 into the energy part (E2dE/(2π2)) and the
angular one (dΓ) in the expression of Hν, where E denotes the
neutrino energy and dΓ corresponds to the measure for the solid
angle normalized by 4π ( pG = vd d 4 ). Hereafter, we ignore
the vacuum contribution (HV) since we focus only on the fast
mode in the neutrino flavor conversions.7 Then, Equation (1)
becomes energy-independent and one can integrate out the
energy dependence. The energy-integrated form of the EOM can
be written as

r r¶ =m
m n niv H, , 5[ ] ( )

where

òr
p

rºn n
-¥

¥
E dE

1
2

, 6
2

2 ( )

and Hν defined in Equation (3) can be also rewritten in terms of
rn as

ò rº G¢ ¢ ¢n
m

m nH G d v v2 . 7F ( )

It is well known that the matter potential, which dominates
the vacuum contribution in the supernova core, suppresses the
neutrino flavor conversion as long as the neutrino contribution
is neglected (Wolfenstein 1979). It is hence reasonable to use
the neutrino distribution functions obtained in our CCSN
simulation, which neglected the neutrino oscillations, as
unperturbed states in the linear stability analysis. They are
indeed fixed points in Equation (5).

For latter convenience, we decompose the energy-integrated
density matrix into the trace and traceless parts:

r =
+

+
-

-n
n n n nf f f f

I
s S

S s2 2
. 8v v

v v

e x e x

*
( )

⎛
⎝⎜

⎞
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The coefficients, nf , are related with the unperturbed distribu-
tion function, fνi, as

òp
= -n n n

¥
f f f E dE

1
2

. 9
2 0

2
i i i

( ) ( )¯

Since we assume =n nf f
x x

¯ in our CCSN simulations, we set
=nf 0

x
in this study. Hence, the unperturbed density matrix is

expressed as

r = +
-n

n nf f
I

2 2
1 0
0 1

. 10b
e e( ) ( )( )

We linearize Equation (5), assuming that the off-diagonal
component is small (S 1v � ), to obtain the following equation
for Sv:

ò
�¶ +

= - L + F + G¢ ¢m
m m

m
m ¢ ¢

vi S

v S d v v G S , 11

t r v

v v v

( · )
( ) ( )

with

º nf vG G2 , 12v F e
( ) ( )

òF º Gm md G v . 13v ( )

Note that the diagonal component remains conserved in the
linear order (see also Airen et al. 2018).
To obtain solutions of Equation (11), we take a plane-wave

ansatz, which can be written in the form

= - W - k rS Q i texp . 14v v [ ( · )] ( )

Then, the EOM can be rewritten as

ò= - G¢ ¢m
m

m
m ¢ ¢v k Q d v v G Q , 15v v v ( )

where w= - º - L - Fm m m mkk K,( ( )) with = -Wm kK ,( ).
We can further rewrite the equation as

=
m

m
g

g
Q

v a

v k
, 16v ( )

where aμ is defined as

òº - Gm ma d v G Q , 17v v ( )

which is called the polarization vector. Inserting Equation (16)
into the right-hand side of Equation (17), we obtain the
following relation:

P =mn
na 0, 18( )

where

ò

ò

h

h
w

P º + G

= - G
-

mn mn
m n

g
g

mn
m n

v k

d G
v v
v k

d G
v v

. 19

v

v ·
( )

In this equation, h = -mn diag 1, 1, 1, 1( ) is the Minkowski
metric and Πμν is called the polarization tensor. The nontrivial
solutions can be obtained only when

P =det 0, 20( )
which gives a relation between ω and k or the DR.
We numerically search the solutions of Equation (20) that

give instability. As is well known, however, we need to take
care when numerically finding these solutions, since the so-
called spurious modes (Sarikas et al. 2012) are artificially
generated if we conduct integrations numerically by discretiza-
tion. More recently, two of the authors of this paper developed
a novel method to avoid this unpleasant issue, in which the
integrations are done analytically with some basis functions
(Morinaga & Yamada 2018). The validity of the method was
confirmed in our previous paper (Delfan Azari et al. 2019).
This method is a bit computationally costly, however, since
high-order polynomials are required to compute the DR for
strongly forward-peaked angular distributions accurately and is
not suitable for a survey of wide spatial regions in many
snapshots. We hence use a simpler formula for the maximum
growth rate of an unstable solution (see also Equation (8) in

6 The integral domain for the neutrino energy is from negative to positive
infinity in Equation (3), since we take the flavor isospin convection.
7 Note that the vacuum contribution may play an important role as a seed
perturbator to trigger the flavor conversion. We also refer the reader to Airen
et al. (2018) for the case where slow and fast modes mix.
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angle normalized by 4π ( pG = vd d 4 ). Hereafter, we ignore
the vacuum contribution (HV) since we focus only on the fast
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It is well known that the matter potential, which dominates
the vacuum contribution in the supernova core, suppresses the
neutrino flavor conversion as long as the neutrino contribution
is neglected (Wolfenstein 1979). It is hence reasonable to use
the neutrino distribution functions obtained in our CCSN
simulation, which neglected the neutrino oscillations, as
unperturbed states in the linear stability analysis. They are
indeed fixed points in Equation (5).
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In this equation, h = -mn diag 1, 1, 1, 1( ) is the Minkowski
metric and Πμν is called the polarization tensor. The nontrivial
solutions can be obtained only when

P =det 0, 20( )
which gives a relation between ω and k or the DR.
We numerically search the solutions of Equation (20) that

give instability. As is well known, however, we need to take
care when numerically finding these solutions, since the so-
called spurious modes (Sarikas et al. 2012) are artificially
generated if we conduct integrations numerically by discretiza-
tion. More recently, two of the authors of this paper developed
a novel method to avoid this unpleasant issue, in which the
integrations are done analytically with some basis functions
(Morinaga & Yamada 2018). The validity of the method was
confirmed in our previous paper (Delfan Azari et al. 2019).
This method is a bit computationally costly, however, since
high-order polynomials are required to compute the DR for
strongly forward-peaked angular distributions accurately and is
not suitable for a survey of wide spatial regions in many
snapshots. We hence use a simpler formula for the maximum
growth rate of an unstable solution (see also Equation (8) in

6 The integral domain for the neutrino energy is from negative to positive
infinity in Equation (3), since we take the flavor isospin convection.
7 Note that the vacuum contribution may play an important role as a seed
perturbator to trigger the flavor conversion. We also refer the reader to Airen
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approximations in the supernova core (but see Bollig et al.
2017). Following the common practice, we divide the integral
in momentum space6 into the energy part (E2dE/(2π2)) and the
angular one (dΓ) in the expression of Hν, where E denotes the
neutrino energy and dΓ corresponds to the measure for the solid
angle normalized by 4π ( pG = vd d 4 ). Hereafter, we ignore
the vacuum contribution (HV) since we focus only on the fast
mode in the neutrino flavor conversions.7 Then, Equation (1)
becomes energy-independent and one can integrate out the
energy dependence. The energy-integrated form of the EOM can
be written as
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It is well known that the matter potential, which dominates
the vacuum contribution in the supernova core, suppresses the
neutrino flavor conversion as long as the neutrino contribution
is neglected (Wolfenstein 1979). It is hence reasonable to use
the neutrino distribution functions obtained in our CCSN
simulation, which neglected the neutrino oscillations, as
unperturbed states in the linear stability analysis. They are
indeed fixed points in Equation (5).

For latter convenience, we decompose the energy-integrated
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In this equation, h = -mn diag 1, 1, 1, 1( ) is the Minkowski
metric and Πμν is called the polarization tensor. The nontrivial
solutions can be obtained only when

P =det 0, 20( )
which gives a relation between ω and k or the DR.
We numerically search the solutions of Equation (20) that

give instability. As is well known, however, we need to take
care when numerically finding these solutions, since the so-
called spurious modes (Sarikas et al. 2012) are artificially
generated if we conduct integrations numerically by discretiza-
tion. More recently, two of the authors of this paper developed
a novel method to avoid this unpleasant issue, in which the
integrations are done analytically with some basis functions
(Morinaga & Yamada 2018). The validity of the method was
confirmed in our previous paper (Delfan Azari et al. 2019).
This method is a bit computationally costly, however, since
high-order polynomials are required to compute the DR for
strongly forward-peaked angular distributions accurately and is
not suitable for a survey of wide spatial regions in many
snapshots. We hence use a simpler formula for the maximum
growth rate of an unstable solution (see also Equation (8) in

6 The integral domain for the neutrino energy is from negative to positive
infinity in Equation (3), since we take the flavor isospin convection.
7 Note that the vacuum contribution may play an important role as a seed
perturbator to trigger the flavor conversion. We also refer the reader to Airen
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approximations in the supernova core (but see Bollig et al.
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in momentum space6 into the energy part (E2dE/(2π2)) and the
angular one (dΓ) in the expression of Hν, where E denotes the
neutrino energy and dΓ corresponds to the measure for the solid
angle normalized by 4π ( pG = vd d 4 ). Hereafter, we ignore
the vacuum contribution (HV) since we focus only on the fast
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becomes energy-independent and one can integrate out the
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It is well known that the matter potential, which dominates
the vacuum contribution in the supernova core, suppresses the
neutrino flavor conversion as long as the neutrino contribution
is neglected (Wolfenstein 1979). It is hence reasonable to use
the neutrino distribution functions obtained in our CCSN
simulation, which neglected the neutrino oscillations, as
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indeed fixed points in Equation (5).
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where aμ is defined as
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which is called the polarization vector. Inserting Equation (16)
into the right-hand side of Equation (17), we obtain the
following relation:
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In this equation, h = -mn diag 1, 1, 1, 1( ) is the Minkowski
metric and Πμν is called the polarization tensor. The nontrivial
solutions can be obtained only when

P =det 0, 20( )
which gives a relation between ω and k or the DR.
We numerically search the solutions of Equation (20) that

give instability. As is well known, however, we need to take
care when numerically finding these solutions, since the so-
called spurious modes (Sarikas et al. 2012) are artificially
generated if we conduct integrations numerically by discretiza-
tion. More recently, two of the authors of this paper developed
a novel method to avoid this unpleasant issue, in which the
integrations are done analytically with some basis functions
(Morinaga & Yamada 2018). The validity of the method was
confirmed in our previous paper (Delfan Azari et al. 2019).
This method is a bit computationally costly, however, since
high-order polynomials are required to compute the DR for
strongly forward-peaked angular distributions accurately and is
not suitable for a survey of wide spatial regions in many
snapshots. We hence use a simpler formula for the maximum
growth rate of an unstable solution (see also Equation (8) in

6 The integral domain for the neutrino energy is from negative to positive
infinity in Equation (3), since we take the flavor isospin convection.
7 Note that the vacuum contribution may play an important role as a seed
perturbator to trigger the flavor conversion. We also refer the reader to Airen
et al. (2018) for the case where slow and fast modes mix.
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approximations in the supernova core (but see Bollig et al.
2017). Following the common practice, we divide the integral
in momentum space6 into the energy part (E2dE/(2π2)) and the
angular one (dΓ) in the expression of Hν, where E denotes the
neutrino energy and dΓ corresponds to the measure for the solid
angle normalized by 4π ( pG = vd d 4 ). Hereafter, we ignore
the vacuum contribution (HV) since we focus only on the fast
mode in the neutrino flavor conversions.7 Then, Equation (1)
becomes energy-independent and one can integrate out the
energy dependence. The energy-integrated form of the EOM can
be written as

r r¶ =m
m n niv H, , 5[ ] ( )

where

òr
p

rºn n
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¥
E dE

1
2

, 6
2

2 ( )

and Hν defined in Equation (3) can be also rewritten in terms of
rn as

ò rº G¢ ¢ ¢n
m

m nH G d v v2 . 7F ( )

It is well known that the matter potential, which dominates
the vacuum contribution in the supernova core, suppresses the
neutrino flavor conversion as long as the neutrino contribution
is neglected (Wolfenstein 1979). It is hence reasonable to use
the neutrino distribution functions obtained in our CCSN
simulation, which neglected the neutrino oscillations, as
unperturbed states in the linear stability analysis. They are
indeed fixed points in Equation (5).

For latter convenience, we decompose the energy-integrated
density matrix into the trace and traceless parts:

r =
+

+
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n n n nf f f f

I
s S

S s2 2
. 8v v

v v

e x e x

*
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The coefficients, nf , are related with the unperturbed distribu-
tion function, fνi, as
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. 9
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Since we assume =n nf f
x x

¯ in our CCSN simulations, we set
=nf 0

x
in this study. Hence, the unperturbed density matrix is

expressed as

r = +
-n

n nf f
I

2 2
1 0
0 1

. 10b
e e( ) ( )( )

We linearize Equation (5), assuming that the off-diagonal
component is small (S 1v � ), to obtain the following equation
for Sv:
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Note that the diagonal component remains conserved in the
linear order (see also Airen et al. 2018).
To obtain solutions of Equation (11), we take a plane-wave

ansatz, which can be written in the form

= - W - k rS Q i texp . 14v v [ ( · )] ( )

Then, the EOM can be rewritten as

ò= - G¢ ¢m
m

m
m ¢ ¢v k Q d v v G Q , 15v v v ( )

where w= - º - L - Fm m m mkk K,( ( )) with = -Wm kK ,( ).
We can further rewrite the equation as

=
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Q

v a

v k
, 16v ( )

where aμ is defined as

òº - Gm ma d v G Q , 17v v ( )

which is called the polarization vector. Inserting Equation (16)
into the right-hand side of Equation (17), we obtain the
following relation:

P =mn
na 0, 18( )

where
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In this equation, h = -mn diag 1, 1, 1, 1( ) is the Minkowski
metric and Πμν is called the polarization tensor. The nontrivial
solutions can be obtained only when

P =det 0, 20( )
which gives a relation between ω and k or the DR.
We numerically search the solutions of Equation (20) that

give instability. As is well known, however, we need to take
care when numerically finding these solutions, since the so-
called spurious modes (Sarikas et al. 2012) are artificially
generated if we conduct integrations numerically by discretiza-
tion. More recently, two of the authors of this paper developed
a novel method to avoid this unpleasant issue, in which the
integrations are done analytically with some basis functions
(Morinaga & Yamada 2018). The validity of the method was
confirmed in our previous paper (Delfan Azari et al. 2019).
This method is a bit computationally costly, however, since
high-order polynomials are required to compute the DR for
strongly forward-peaked angular distributions accurately and is
not suitable for a survey of wide spatial regions in many
snapshots. We hence use a simpler formula for the maximum
growth rate of an unstable solution (see also Equation (8) in

6 The integral domain for the neutrino energy is from negative to positive
infinity in Equation (3), since we take the flavor isospin convection.
7 Note that the vacuum contribution may play an important role as a seed
perturbator to trigger the flavor conversion. We also refer the reader to Airen
et al. (2018) for the case where slow and fast modes mix.
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Dispersion relation approach
(Izaguirre et al. 2017) 1. Decomposing traceless part

2. Linearizing QKE equation
3. Plane-wave ansatz
4. Computing Dispersion relation 
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4.

In the post-shock regions, on the other hand, most heavy nuclei
are broken up into lighter nuclei or nucleons; thus, the above
mechanism does not operate. In fact, ne is dominant over ne¯ for all
flight directions up to Tb∼150ms, and there is no positive sign of
fast flavor conversion (see first and second panels from left on the
bottom row in Figure 2). This is qualitatively consistent with our
previous paper (Delfan Azari et al. 2019). As shown in other plots
on the bottom row in Figure 2, however, unstable modes appear in
the northern hemisphere (the same hemisphere with stronger shock
expansion) from Tb200ms and persist throughout the late
phase. The role of the asymmetric neutrino emissions in the fast
flavor conversion will be discussed in detail in Section 4.2.

In the top row of Figure 3, we show the DR for wave number
vectors, which are chosen to be radial, at two unstable locations
in the post-shock region. Equation (20) is solved with spherical
harmonics up to ℓ=9. As we have already mentioned, the
analytic integration with base functions is the key to avoid
spurious modes. In the figure, we find some peaks in the DR,
which may be a good indicator for the existence of unstable
models (see Delfan Azari et al. 2019 for more details). In the
bottom panels, we show the growth rates as a function of the
wave number. There exist unstable modes, indeed, as indicated
by the DR as well as by the approximate prescription of
Equation (3).

4.2. Role of Asymmetric ν Emissions

Next, we turn our attention to the role of the asymmetric
neutrino emission in the occurrence of the fast flavor conversion.
Figures 4 and 5 portray the asymmetry in neutrino emissions: the
former displays the radial profile of number density of νe (Nνe)
and ne¯ ( nN e¯ ) along two selected radial rays (θ=45◦ and 135◦) for
two snapshots at Tb=100 and 250ms, and the latter displays
their ELN asymmetry, which is defined by the ratio of the ELN
along each radial ray to the angle average. At Tb=100ms, the
radial distributions of Nνe and nN e¯ are roughly spherically
symmetric except for the region of 15r30 km, in which
violent matter motions produced by convections in the PNS
disturb the neutrino distributions. Occasionally, Nνe and nN e¯
become close each other (see, e.g., the black and brown solid lines
in Figure 4). However, Nνe is roughly one order of magnitude
larger than nN e¯ , and the ELN crossing hardly occurs.8 The
dominance of νe over ne¯ can be understood through chemical
potential of νe (μνe).9 At Tb=100 ms, μνe is 8MeV in the
region of 15r30 km (see the black lines in the bottom

Figure 3. Top: dispersion relations of fast flavor conversion with respect to the wave number of local radial direction at two representative unstable locations. The left
panel displays the result at r=50 km along a radial ray with θ=45°, while the right one is the same one as the left panel but for r=75 km. The time is
Tb=250 ms. Bottom: the growth rate as a function of wave number. The spatial location and time in these panels are the same as those of the top panel in the
same line.

8 The angular distributions of νe and ne¯ are both nearly isotropic in this region.
9 The chemical potential of νe is defined as μνe ≡μe+μp−μn, where μe, μp,
and μn are that of electron, proton, and neutron, respectively.
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approximations in the supernova core (but see Bollig et al.
2017). Following the common practice, we divide the integral
in momentum space6 into the energy part (E2dE/(2π2)) and the
angular one (dΓ) in the expression of Hν, where E denotes the
neutrino energy and dΓ corresponds to the measure for the solid
angle normalized by 4π ( pG = vd d 4 ). Hereafter, we ignore
the vacuum contribution (HV) since we focus only on the fast
mode in the neutrino flavor conversions.7 Then, Equation (1)
becomes energy-independent and one can integrate out the
energy dependence. The energy-integrated form of the EOM can
be written as

r r¶ =m
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where
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and Hν defined in Equation (3) can be also rewritten in terms of
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It is well known that the matter potential, which dominates
the vacuum contribution in the supernova core, suppresses the
neutrino flavor conversion as long as the neutrino contribution
is neglected (Wolfenstein 1979). It is hence reasonable to use
the neutrino distribution functions obtained in our CCSN
simulation, which neglected the neutrino oscillations, as
unperturbed states in the linear stability analysis. They are
indeed fixed points in Equation (5).

For latter convenience, we decompose the energy-integrated
density matrix into the trace and traceless parts:

r =
+
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The coefficients, nf , are related with the unperturbed distribu-
tion function, fνi, as
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Since we assume =n nf f
x x

¯ in our CCSN simulations, we set
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in this study. Hence, the unperturbed density matrix is

expressed as

r = +
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We linearize Equation (5), assuming that the off-diagonal
component is small (S 1v � ), to obtain the following equation
for Sv:
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Note that the diagonal component remains conserved in the
linear order (see also Airen et al. 2018).
To obtain solutions of Equation (11), we take a plane-wave

ansatz, which can be written in the form

= - W - k rS Q i texp . 14v v [ ( · )] ( )

Then, the EOM can be rewritten as

ò= - G¢ ¢m
m

m
m ¢ ¢v k Q d v v G Q , 15v v v ( )

where w= - º - L - Fm m m mkk K,( ( )) with = -Wm kK ,( ).
We can further rewrite the equation as

=
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v k
, 16v ( )

where aμ is defined as

òº - Gm ma d v G Q , 17v v ( )

which is called the polarization vector. Inserting Equation (16)
into the right-hand side of Equation (17), we obtain the
following relation:

P =mn
na 0, 18( )

where
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In this equation, h = -mn diag 1, 1, 1, 1( ) is the Minkowski
metric and Πμν is called the polarization tensor. The nontrivial
solutions can be obtained only when

P =det 0, 20( )
which gives a relation between ω and k or the DR.
We numerically search the solutions of Equation (20) that

give instability. As is well known, however, we need to take
care when numerically finding these solutions, since the so-
called spurious modes (Sarikas et al. 2012) are artificially
generated if we conduct integrations numerically by discretiza-
tion. More recently, two of the authors of this paper developed
a novel method to avoid this unpleasant issue, in which the
integrations are done analytically with some basis functions
(Morinaga & Yamada 2018). The validity of the method was
confirmed in our previous paper (Delfan Azari et al. 2019).
This method is a bit computationally costly, however, since
high-order polynomials are required to compute the DR for
strongly forward-peaked angular distributions accurately and is
not suitable for a survey of wide spatial regions in many
snapshots. We hence use a simpler formula for the maximum
growth rate of an unstable solution (see also Equation (8) in

6 The integral domain for the neutrino energy is from negative to positive
infinity in Equation (3), since we take the flavor isospin convection.
7 Note that the vacuum contribution may play an important role as a seed
perturbator to trigger the flavor conversion. We also refer the reader to Airen
et al. (2018) for the case where slow and fast modes mix.
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FFC and CFI can occur in CCSNe

6

Time

Any type of crossings (PNS convection)
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(nucleon-scattering + α    1 + cold matter)

Shock wave

Space-time diagram of ELN-angular crossings in CCSNe
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FIG. 4. Space-time diagram for appearance of ELN crossings. The bold red line portrays a time
trajectory for the shock wave in exploding models. The thin and dashed line represents the counterpart
of shock trajectory for non-exploding models. The color code for enclosed regions distinguishes types
of ELN crossing. The green, blue, and brown color denote Type I, Type II, and any type of crossings,
respectively. In each region, we provide some representative characteristics of ELN-crossings. The
remark ”Exp-only” denotes that the ELN-crossing appears only in exploding models. See text for
more detail.

anism for these is di↵erent. In Sec. III B, we conduct an
in-depth analysis of their physical origin.

We provide a schematic space-time diagram of ELN
crossings in Fig. 4. This figure summarizes the over-
all trends of crossings observed in our CCSN models.
We note that crossings relevant to PNS convection and
the pre-shock region drawn in Fig. 4 are not included in
Fig. 3. There is a technical reason why we do not include
the case with PNS convection in Fig. 3. This issue will be
discussed later. To facilitate the readers’ understanding,
the color in Fig. 4 distinguishes types of ELN-crossings.
Below, we turn our attention to the physical origin of
ELN crossing generation.

B. Generation mechanism of ELN crossings

1. Type-II crossings at early post-bounce phase

Let us start by analyzing the Type-II crossings that
appear at the early post-bounce phase (⇠ 100 ms) in all
CCSN models (see the top left panel in Fig. 3). We first
present the result from the 12 solar mass model as a rep-
resentative case. The progenitor-dependence is discussed
later. In Fig. 5, we show Mollweide projections of the
ELN crossing and some important quantities at 130 km
for the 12 solar mass model case. We find that the Type
II crossing has a rather scattered distribution (see the

top left panel). To see the trend more quantitatively, we
show �Gout in the left middle panel in Fig. 5, which cor-
responds to the ELN at µ = 1. Here �Gout and �Gin

are defined as follows. The energy-integrated number of
neutrinos at µ = 1 and �1 are written as

Gout =

Z
d(

"3

3
)fout("),

Gin =

Z
d(

"3

3
)fin("),

(2)

respectively, where " denotes the neutrino energy in units
of MeV. We stress that both fout and fin in Eq. 2 are the
basic output of our angular reconstruction computation
complemented by the ray-tracing method (see Sec. II B).
Here �G is the di↵erence of the ⌫e and ⌫̄e G values:

�G = G⌫e �G⌫̄e , (3)

where we omit the subscript ”out” or ”in” in Eq. 3. As
shown in Fig. 5, we find that ⌫̄e dominates over ⌫e in
some regions (blue-colored area), and these regions are
in one-to-one correspondence to the regions of Type-II
crossings. The one-to-one correspondence is attributed
to the fact that ⌫e always overwhelms ⌫̄e in µ = �1
(incoming) direction.
We find some interesting correlations between the

Type-II crossings and other physical quantities. These
correlations provide useful insight for studying the phys-
ical origin of the crossings. To quantify the correlations,
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FIG. 2. Meridian map of CFI growth rate (left), FFI growth rate (middle), and the dominant instability (right) at t = 404ms
after bounce.

and non-resonance CFI’s more closely in turn.

1. Resonance-like CFI

The resonance-like CFI occurs when the situation A ⇡
0 is realized [57, 64]. This is vindicated in the panels
in the second row of Fig. 3, where we plot the radial
profiles of the number densities of all neutrinos as well
as G = (n⌫e + n⌫̄e � 2n⌫x)/2 and |A| = |n⌫e � n⌫̄e |/2
(see Eq. 17). The very sharp dips in A correspond to
the peaks in the growth rate (see the top panels) indeed.
It is also found that G has dips at the same positions,
but so as deep as A. By definition, the situation A ⇡ 0
occurs when the number densities of ⌫e and ⌫̄e become
close to each other. On the other hand, G becomes zero
if n⌫e + n⌫̄e = 2n⌫x , which is not completely the case at
A = 0. As a result, G/|A| gets very large at the points,
creating the resonance-like CFI as observed in the plots
on the third row of Fig. 3. Note that we assume n⌫x =
n⌫̄x . If this assumption is not valid due to muonization, it
may prevent A to become zero at the point where n⌫e =
n⌫̄e , and might hinder the resonance-like CFI. We will
investigate it in the future.

Here we comment on the possible artifact of the low
radial resolution. With a finite number of grid points, it
is impossible to have A = 0 on one of the grid points.
As a result, the CFI growth rate is underestimated in
the vicinity of the resonance-like CFI. The insu�cient
resolution also explains the absence of the resonance-like
CFI at r ⇠ 10 km for ✓ = 45� in spite of n⌫e ⇠ n⌫̄e .
As a matter of fact, matter is more compressed and the
scaleheight at this angle is shorter than at ✓ = 90�.

The non-detection of the resonance-like CFI in the 1D

study [64] is not an artifact by the low resolution, on
the other hand. As already mentioned, the abundance
of ⌫̄e tends to be underestimated in 1D due to the lack
of convection. As a result, A = 0, which is equivalent
to resonance-like CFI, is unlikely to be realized. This
clearly indicates the importance of multi-dimensionality
for CFI.

2. Non-resonance CFI

We now move on to the non-resonance CFI. The inner
edge of the CFI region (r ⇠ 30 km) corresponds to the
position where n⌫̄e exceeds n⌫x . Then G > |A| holds
above this radius. Since � ⇡ ↵ is satisfied, it leads to
the occurrence of the ordinary non-resonance CFI there.
At larger radii (r & 40 km), however, the CFI ceases to
exist despite G > |A| is sustained. This is because the
ratio ↵/� gets smaller as shown in the panels on the third
row of Fig. 3. The two ratios G/A and �/↵ dictate the
emergence/extinction of the CFI region: the growth rate
becomes positive (and hence the CFI occurs) only when
they are comparable or larger than unity.

The behavior of � and ↵ can be understood from the
panels in the fourth row of Fig. 3, where the collision
rates (Eq. 20) are plotted together with ↵ and �. It
is found that �e is dominant over �̄e and �x at 10 .
r . 30 km, which results in � ⇠ ↵ there. At larger radii
r & 40 km, on the other hand, �̄e becomes comparable
to �e. As a result, ↵ gets smaller than �.

In order to understand the behavior of �e and �̄e fur-
ther, we plot the contributions of individual neutrino-
matter interactions in Fig. 4. As can be seen, the elec-
tron capture on proton (ecp) and the anti-electron cap-

Akaho et al. 2023

Collisional flavor instability (CFI)
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where ⌫ = �p
µ
nµ = p

0
↵; ↵ denotes the lapse func-

tion; mi denotes the mass of neutrinos; U denotes
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
The matter potential Hmat can be written as

Hmat = D

2

4
Ve 0 0
0 Vµ 0
0 0 V⌧ + Vµ⌧

3

5 , (5)

where D = (�p
µ
uµ)/⌫ denotes the e↵ective Doppler

factor between the laboratory frame and the fluid-rest
frame, representing the Lorentz boost between n and u

under the locally-flat metric (see [52, 53] for more de-
tails). The leading order of V` can be written as

V` =
p
2GF (n`� � n`+), (6)

where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. In our de-
fault set, we assume that on-shell heavy leptons (muons
and tau) do not appear, i.e., Vµ and V⌧ are set to be zero.
It should be mentioned, however, that Vµ should be set
appropriately, if muons appear in the vicinity of (or in-
side) neutrino star [see, e.g., 54, 55]. Vµ⌧ represents, on
the other hand, the radiative correction of neutral current
[56, 57], which is a leading order potential to distinguish
⌫µ and ⌫⌧ in the case of Vµ = V⌧ = 0. Following Dighe
and Smirnov [57], Vµ⌧ can be computed as,

Vµ⌧ = Ve
3GFm

2
⌧

2
p
2⇡2Ye

✓
ln

m
2
W

m2
⌧

� 1 +
Yn

3

◆
, (7)

where m⌧ and mW denote the mass of tau and W boson,
respectively. Ye and Yn represents the electron-fraction
and neutron-fraction, respectively.

Finally, H⌫⌫ represents the self-interaction potential,
which can be written as

H⌫⌫ =
p
2GF

Z
d
3
q
0

(2⇡)3
(1�

3X

i=1

`
0
(i)`(i))(f(q

0)� f̄
⇤(q0)),

(8)
where d

3
q denotes the momentum space volume of neu-

trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,

`(3) = sin ✓⌫ sin �⌫ ,

(9)

where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.

1
In some approaches, it may be useful to define Hamiltonian op-

There are two remarks in the expressions. First, we
take the relativistic limit of neutrinos; the energy of neu-
trinos is much larger than the rest-mass energy, which is
reasonable approximation for the system of CCSN and
BNSM2. Hence, we treat the neutrinos as massless parti-
cles in the transport equation (the left hand side of Eq. 1)
and the collision term (the first term in the right hand
side of Eq. 1), meanwhile we leave the leading term of
⌫⇥ (m/⌫)2 in the Hamiltonian operator (see Eq. 4). Sec-
ond, we define the Hamiltonian operator in the labora-
tory frame, although the choice of the frame is arbitrary.
Indeed, [59] defines them on the fluid-rest frame, which
may be convenient in the optically thick region where
neutrinos are isotropic angular distributions in the fluid-
rest frame.

Following [60], we cast the QKE equation in a con-
servative form, which is desirable not only for numer-
ical simulations but also dividing the global quantities
(space-time average) from the subgrid-scale fluctuations
(see below). The conservative form of QKE can be writ-
ten as;

1p
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����
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n
↵ +
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`ie
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@
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+
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sin2 ✓⌫

@

@�⌫
(
(�)

f !(�⌫)) = D

(�)

S col � i[
(�)

H ,

(�)

f ],

(12)

where g, x
↵ are the determinant of the four-dimensional

metric, coordinates of spacetime, respectively. e
↵
(i)(i =

1, 2, 3) denote a set of the (spatial) tetrad bases normal

erators on the fluid-rest frame. They are related to those define

in laboratory frame as,

H = DH
F
. (10)

The self-interaction potential at the fluid rest frame can be writ-

ten as

H
F
⌫⌫ =

p
2GF

Z
d
3
q
0F

(2⇡)3
(1�

3X

i=1

`
0F
(i)`

F
(i))(f

F
(q

0F
)�f̄

F⇤
(q

0F
)), (11)

where f
F

denotes the density matrix of neutrinos measured at

the fluid rest frame. In the expression, the directional cosines `
F
(i)

are also defined on the fluid rest frame, i.e., they are measured

from ê(1). The ê(1) can be obtained by following prescription in

[53] (see Eqs.14-20 in the paper).
2
The typical energy of neutrinos in CCSN and BNSM is an order

of 10 MeV, meanwhile the current upper bound of neutrino mass

is <⇠ 0.1 eV [58].

Self-interaction potential 
depends on neutrino angular 
distributions in momentum space
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I. INTRODUCTION

II. BASIC EQUATIONS

p
µ @

(�)

f

@xµ
+

dp
i

d⌧

@

(�)

f

@pi
= �p

µ
uµ

(�)

S col + ip
µ
nµ[

(�)

H ,

(�)

f ], (1)

In the expression, f and f̄ denote the density matrix
of neutrinos and anti-neutrinos, respectively; xµ and p

µ

are spaticetime coordinates and the four-momentum of
neutrinos (and anti-neutrinos); uµ and n

µ represent the
four-velocity of fluid and the unit vector normal to the
spatial hypersurface of constant time, respectively; Scol

and S̄col are the collision terms measured at the fluid rest
frame; H and H̄ denote the Hamiltonian operators which
can be decomposed as

(�)

H =
(�)

H vac +
(�)

Hmat +
(�)

H ⌫⌫ , (2)

where

H̄vac = H
⇤
vac,

H̄mat = �H
⇤
mat,

H̄⌫⌫ = �H
⇤
⌫⌫ .

(3)

Hvac denotes the vacuum Hamiltonian with the ex-
pression in the neutrino-flavor eigenstate, which can be
written as

Hvac =
1

2⌫
U

2

4
m

2
1 0 0
0 m

2
2 0

0 0 m
2
3

3

5U
†
, (4)

where ⌫ = �p
µ
nµ = p

0
↵; ↵ denotes the lapse func-

tion; mi denotes the mass of neutrinos; U denotes
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
The matter potential Hmat can be written as

Hmat = D

2

4
Ve 0 0
0 Vµ 0
0 0 V⌧

3

5 , (5)

⇤
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where D = (�p
µ
uµ)/⌫ denotes the Doppler factor be-

tween the laboratory frame and the fluid-rest frame (see
[1, 2]); The leading order of V` can be written as

V` ⇠
p
2GF (n`� � n`+), (6)

where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. We note,
however, that µ and ⌧ do not appear in CCSN (but see
[3, 4] for interesting possibilities of µ appearance in CCSN
core); hence the next order correction, radiative correc-
tion, should be taken into account [5, 6], which would be
important for the baryon density above ⇠ 108g/cm3. Fi-
nally, H⌫⌫ represents the self-interaction potential, which
can be written as

H⌫⌫ =
p
2GF

Z
d
3
q
0

(2⇡)3
(1�

3X

i=1

`
0
(i)`(i))(f(q

0)� f̄
⇤(q0)),

(7)
where d

3
q denotes the momentum space volume of neu-

trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,

`(3) = sin ✓⌫ sin �⌫ ,

(8)

where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.

1
In some approaches, it may be useful to define Hamiltonian op-

erators on the fluid-rest frame. They are related to those define

in laboratory frame as,

H = DH
F
. (9)

The self-interaction potential at the fluid rest frame can be writ-

ten as

H
F
⌫⌫ =

p
2GF

Z
d
3
q
0F

(2⇡)3
(1�

3X

i=1

`
0F
(i)`

F
(i))(f

F
(q

0F
)�f̄

F⇤
(q

0F
)), (10)

where f
F

denotes the density matrix of neutrinos measured at

the fluid rest frame. In the expression, the directional cosines `
F
(i)

are also defined on the fluid rest frame, i.e., they are measured

from ê(1). The ê(1) can be obtained by following prescription in

[2] (see Eqs.14-20 in the paper).

- Global simulations:
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Time-dependent global simulations of FFC

- Strategy:

2

tion). These simulations are useful to demonstrate how
FFCs give impacts on CCSN and BNSM dynamics quali-
tatively. On the other hand, their outcome hinges on the
instability criteria and the choice of parameter for neu-
trino mixings, exhibiting that better approximate pre-
scriptions are required to gauze accurate sensitivity of
CCSN and BNSM dynamics to FFCs.

Recently we proposed a novel approach to pave the
way towards incorporating FFCs into CCSN and BNSM
simulations [48] (hereafter the paper is referred to as
NZv1). In this approach, neutrino transport is solved
with quantum kinetic treatments with attenuating neu-
trino Hamiltonian potentials parametrically. Thanks to
the attenuation of the Hamiltonian, large-scale FFC sim-
ulations can be carried out with feasible computational
costs. It is also worth to note that our proposed method
can be used for other studies of neutrino flavor conver-
sions; for instance, Xiong et al. [49] recently carried out
large-scale simulations of collisional instability with at-
tenuating Hamiltonian.

In NZv1, we performed FFC simulations in 50km spa-
tial scales (50km  R  100km), and then we ana-
lyzed their global features. We found that the time-
averaged neutrino distributions are insensitive to the at-
tenuation of Hamiltonian1, suggesting that the similar
time-averaged profile would appear in the case without
the attenuation. We also found in NZv1 that the di↵er-
ence of angular distributions of ELN (electron-neutrino
lepton number) and XLN (heavy-neutrino lepton num-
ber) is a key quantity to determine the non-linear satu-
ration of flavor conversion, and to characterize the subse-
quent quasi-steady state of FFCs. In fact, the ELN-XLN
angular crossings become very shallow or even disappear
in the time-averaged profile after the system reaches non-
linear saturation. As such, NZv1 illustrated that the pro-
posed method, attenuating Hamiltonian, can bring new
insights on FFCs. This method is also expected to play a
crucial role to connect local- and global features of neu-
trino quantum kinetics.

In this paper, we extend our previous study in NZv1
by covering various initial states of neutrinos. This study
is motivated by the fact that we focused on the ability
of our new approach in NZv1, and therefore we fixed
the initial angular distributions of neutrinos. However,
it is necessary to carry out a systematic study for vari-
ous initial conditions so as to capture generic features of
FFCs. To analyze the large-scale numerical simulations,
we also carry out local simulations in the vicinity of inner
boundary without attenuation of Hamiltonian. We shall
show that some intrinsic features of FFCs can be com-
plemented from these small-scale simulations. Finally, we
provide an approximate method that determines quasi-

1 A word of caution should be spent here. Extreme attenuation
of Hamiltonian potential lead to no flavor conversion. This in-
dicates that there is a threshold in the attenuation-parameter to
capture the qualitative trend of FFCs in global scales.

steady states of FFC without solving QKE. For future
users, we provide a recipe of the method, which can be
easily implemented in existing classical neutrino trans-
port codes.
This paper is structured as follows. In Sec. II we first

review the essence of our approach, attenuation of Hamil-
tonian potentials, for large-scale QKE simulations. We
then describe our models in Sec. III. All numerical re-
sults presented in this paper are encapsulated in Sec. IV.
The approximate method to determine the quasi-steady
state of FFCs is described in Sec. V. Finally, we summa-
rize our conclusions and key messages from the present
work in Sec. VI. Throughout the paper, we use the unit
with c = h̄ = 1, where c and h̄ are the light speed and
the reduced Planck constant, respectively; we choose the
metric signature of �+++.

II. METHOD

The numerical simulations presented in this paper are
carried out with a newly developed QKE neutrino trans-
port code, GRQKNT. Details of the design and a suite
of tests are presented in [50]. Here, we describe only the
essential components of the code directly related to this
present work.
In GRQKNT, we adopt a discrete-ordinate Sn method.

The transport operator is handled with 5th-order
weighted essentially non-oscillatory (WENO) scheme
with a five-stage fourth-order TVD Runge-Kutta. In this
study, we assume spherical symmetry and ignore general
relativistic e↵ects, fluid-velocity dependence, and the col-
lision term. The resultant QKE can be written as,

@

(�)

f

@t
+

1

r2

@

@r
(r2 cos ✓⌫

(�)

f )� 1

r sin ✓⌫

@

@✓⌫
(sin2 ✓⌫

(�)

f )

= �i ⇠ [
(�)

H ,

(�)

f ],

(1)

where f and f̄ represent the density matrix of neutrinos
and antineutrinos, respectively. t, r, and ✓⌫ denote time,
radius, and neutrino flight angle with respect to radial
direction, respectively. H (H̄) represents the neutrino
(antineutrino) oscillation Hamiltonian potential, which is
composed of vacuum-, matter-, and self-interaction com-
ponents. In this study, the matter potential is set to
be zero, but we reduce the mixing angle in the vacuum
potential from that constrained by experiments. This
is a common prescription to e↵ectively include e↵ects of
matter potential2. In this study, the vacuum potential
is added as a perturbation to trigger FFCs3. Following
the previous studies as NZv1, we adopt the two-flavor

2 It is also equivalent to work with polarization vectors of neutrinos
in a co-rotating frame, see [51].

3 As we shall show in Sec. IV, flavor conversions are a↵ected by
vacuum potentials in some of our models. Although the neu-

Attenuation parameter (0 ≦ ξ ≦ 1)
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Attenuating Hamiltonian makes global QKE simulations tractable.

Realistic features can be extracted by a convergence study of ξ (→ 1).
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I. INTRODUCTION

II. RESOLUTION REQUIREMENTS
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◆�1

✓
Eave

12MeV

◆✓
R

50km

◆2 ✓ 

1/3

◆
(3)

Correction by asymmetric degree: �.

Tosc ⌘�Tn⌫
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Let us estimate the size of numerical simulations to
solve QKE in the spatial range of R < r < R+�R. The

⇤ hiroki.nagakura@nao.ac.jp

grid width (�r) and the total number of grid points (Nr)
in radial direction can be estimated as1

�r ⌘`osc
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and
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◆
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(7)

In the estimation, we resolve an oscillation wavelength
(`osc) by qr grid points.
The time step (�t) can be estimated as

�t ⌘CFL⇥ �r

c

⇠3⇥ 10�13 s

✓
CFL

0.1

◆⇣ qr
20
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�
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,

(8)

where CFL denotes a Courant–Friedrichs–Lewy factor.
The simulation time (�T) can be estimated as

�T = qt
�R

c
⇠ 10�3 s

⇣qt
3

⌘✓
�R

100km

◆
. (9)

In Eq. 10, a new variable, qt(� 1), is introduced to take
into account the flight direction of neutrinos in the esti-
mation of �T. In the case without the correction, i.e.,
qt = 1, Nt, �T corresponds to the light-crossing time of
�R for the neutrinos propagating along the radial direc-
tion. For other neutrinos propagating in di↵erent (but
outgoing) directions, their radial velocity is smaller than
the speed of light, indicating that most of the neutri-
nos emitted from the inner boundary point have not yet

1 Just for simplicity, the uniform mesh is assumed.

Oscillation wavelength is an order of sub-centimeter.

Too short !!!!
How can we make FFC simulations tractable???

- Issue:
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Temporal and quasi-steady features of FFC in global scale 
(1D in space + 1D angle in momentum space) 2
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FIG. 1. All plots show fxx/(fee + fxx) as functions of radius and cos θν . Top and bottom panels show results of Model-Γ1
and Model-Γ4, respectively. The left and middle panels display the result at t = 0.1ms and 0.5ms, respectively. The right
panels depict time-averaged distributions in a quasi-steady state phase (0.3ms ≤ t ≤ 0.5ms). The black solid- and dashed lines
represent trajectories of neutrinos emitted in the direction of cos θν = 0 (perpendicular to the radial direction) and cos θν = 0.5
(ELN crossing point), respectively, at the inner boundary (50km).

at outer boundary. 〈
(−)

f
ee
〉 and

(−)

β
ee

are control parame-
ters, which are directly associated with the number den-
sity and anisotropy of angular distributions of neutri-
nos, respectively. In this study, number density of νe
(nν) is set to be 6 × 1032cm−3 at the inner boundary
(50km), which corresponds to Lν ∼ 4 × 1052erg/s for
Eave ∼ 12MeV, where Lν and Eave denotes the νe lu-
minosity and average energy, respectively. We assume
〈fee〉 = 〈f̄ee〉, βee = 0, and β̄ee = 1. The parameter η
in Eq. 3 represents the diluteness of incoming neutrinos
emitted from outer boundary, which is set to be η = 10−6.

In the setup, the oscillation wavelength of FFC at
50km is subcentimeter. The required radial resolution
is, hence, ∼ 0.1cm, illustrating that unfeasible compu-
tational resources are needed for global simulations. We
tackle this issue in the following way. First, we intro-
duce a new parameter, Γ, which represents a reduction
factor of nν . It effectively rescales the oscillation scale
(∼ 104 times larger than the target one as shown below),
which makes > 10km simulations tractable. Second, we
run multiple simulations with different choice of Γ; in
this Letter we study four cases: Γ = 10−4 (Model-Γ1),
2× 10−4 (Model-Γ2), 4× 10−4 (Model-Γ4), and 8× 10−4

(Model-Γ8). To see the impact of angular resolution, we
also run another simulation (Model-Γ1h), in which Γ is
set to be the same as Model-Γ1 but the angular resolution

is twice higher.
We cover a spatial domain of 50km ≤ r ≤ 100km ex-

cept for Model-Γ8. Although Model-Γ8 covers the narrow
spatial domain (50km ≤ r ≤ 60km), it corresponds to the
highest nν among our models, and therefore the model is
worthy to extrapolate our results to the case with Γ = 1.
We deploy 128 angular grid points in our simulations, and
only Model-Γ1h has 256 angular points. In the radial di-
rection, we employ uniform grids with 24576 (for Model-
Γ1 and Model-Γ1h), 49152 (for Model-Γ2), 98304 (for
Model-Γ4), and 49152 (for Model-Γ8) points. It should
be stressed that these large number of grids are necessary
to resolve FFC (an oscillation wavelength is resolved by
>
∼ 10 radial grid points).
We impose a Dirichlet boundary condition for outgo-

ing neutrinos (cos θν > 0) at the inner boundary, and
for incoming neutrinos (cos θν < 0) at the outer one.
In the opposite directions, we impose a free-streaming
boundary condition. To prepare the initial condition, we
run the simulations without FFC until the system settles
into a steady state. In FFC simulations, we follow the
time evolution up to 0.5ms (0.12ms only for Model-Γ8),
which is long enough to establish a quasi-steady state.
We work in two-flavor approximations, and employ vac-
uum potential with ∆m2 = 2.5× 10−6eV2, θmix = 10−6

and Eν = 12MeV, where ∆m2 and θmix denote squared
mass difference of neutrinos, mixing angle, and neutrino

Small ξ

Large ξ
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Attenuating Hamiltonian potential does not change 
the degree of flavor conversion in asymptotic states.
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FIG. 2. Radial profiles of time-averaged neutrino number density in a quasi-steady state. In the left panel, we show nνe

normalized by that at 50km. For comparison, the result without FFC is also shown as a black solid line. In the right panel, we
display nνx/(nνe + nνx), which corresponds to a useful metric to see the degree of flavor conversion.

energy, respectively. We note that the vacuum oscillation
is only important to trigger FFC, and it does not affect
non-linear regimes of FFC in our models. We confirm by
linear analysis that Γ = 10−4 is large enough so that the
fast mode dominates over the slow one.
Results.—Figure 1 shows color maps of fxx normalized

by fee + fxx as functions of radius and neutrino angle.
The black solid line in each panel portrays the radial tra-
jectory of neutrinos emitted perpendicular to radial di-
rection (cos θν = 0) at the inner boundary. This exhibits
a transition to forward-peaked angular distributions of
neutrinos.
As shown in Fig. 1, FFC commonly occurs in our mod-

els (appearance of νx is a sign of flavor conversion). In
the vicinity of inner boundary, however, no strong flavor
conversions occur (see, e.g., 50km < r <

∼ 65km in the
top left panel of Fig. 1), whereas the region becomes nar-
rower with increasing nν (see the bottom panels). This
is attributed to the fact that the growth of FFC becomes
more rapid with increasing nν

1.
Once neutrinos, initially emitted in the radial direc-

tion from the inner boundary, arrive at a certain ra-
dius, flavor structures in all neutrino angles are disor-
ganized (see, e.g., bottom left panel of Fig. 1), despite
the fact that neutrinos traveling in non-radial directions
have not reached yet (since the propagation speed of neu-
trinos with respect to radial direction is proportional to
cos θν). This indicates that the flavor conversion in non-
radial directions is not a consequence of spatial advection

1 In the case without reduction of nν , the width of corresponding
region is only ∼ 20cm; see the left panel of Fig. 11 in [26].

from the inner region (where FFC has already been well
developed), but rather local angular-couplings of FFC.
This also exhibits that neutrinos emitted from the outer
boundary can experience strong flavor conversion. Since
the incoming neutrinos are very dilute, their contribu-
tion to neutrino self-interaction potential is very minor,
suggesting that the flavor conversion is passively induced
by outgoing ones. These incoming neutrinos, possessing
finite flavor off-diagonal components of the density ma-
trix, advect inward, which facilitates the growth of FFC
in the linear regime.

Strong flavor conversion occurs even in the case of low
nν models at late times (see the top middle panel of
Fig. 1), and we find that the system eventually achieves
a quasi-steady state. One of the striking results in this
study is that the degree of flavor conversion does not
hinge on nν in the quasi-steady phase. This trend is
more visible in time-averaged distributions. We com-
pute the time-averaged f by integrating over the time
of 0.3ms ≤ t ≤ 0.5ms; the results are shown in right pan-
els of Fig. 1. Fig. 2 also displays the radial profiles of
time-averaged number density of νe and the ratio of nνx

to nνe
+nνx

in the left and right panel, respectively, for all
models (for Model-Γ8, we compute the time-averaged f
in the time range of 0.06ms ≤ t ≤ 0.12ms). Both figures
illustrate that the degree of flavor mixing is universal. It
should also be mentioned that the angular resolutions in
our simulations does not compromise the time-averaged
profile (see the red dashed-line in Fig. 2 displaying the
result of Model-Γ1h). The result of Model-Γ8, that cor-
responds to the model with the highest spatial resolution
and the modest Γ, also strengthens our conclusion. As
shown in Fig. 2, the results of other models clearly ap-
proach to Model-Γ8 with increasing nν . This lends con-
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FIG. 2. Radial profiles of three key quantities. Left: gain energy from neutrinos. Each color corresponds to a di↵erent model.
Middle: average energy of neutrinos. Line type distinguishes the species of neutrinos. Right: energy flux of neutrinos.

potentially hinders the delayed neutrino-heating mecha-
nism. It may be, however, premature to conclude that
FFCs play negative roles on explosions. As shown in
the same figure, neutrino cooling in optically thick re-
gion is higher in M3F than NFC. Indeed, we find that
the total energy flux of neutrinos at the outer boundary
is increased by ⇠ 33%. This leads to higher matter tem-
perature due to an e�cient contraction of PNS and then
the average energy of neutrinos would also be increased,
that would facilitate neutrino absorptions in the gain re-
gion. This suggests that feedback from neutrino-matter
interactions to fluid dynamics needs to be included to de-
termine whether FFC has a positive or negative role on
driving explosion. The detailed investigation on this is-
sue requires radiation-hydrodynamic simulations, which
is beyond the scope of this paper and will be addressed
in future work.

It is worthy of note that the average energy of electron-
type neutrinos (⌫e) and their antipartners (⌫̄e) in M3F
become higher than the case with NFC (see middle panel
in Fig. 2). This is attributed to the fact that some heavy-
leptonic neutrinos (⌫x), having the highest energy among
flavors, convert to ⌫e and ⌫̄e. On the other hand, energy
fluxes of ⌫e and ⌫̄e become lower (see the right panel of
Fig. 2), which is also due to lower energy flux of ⌫x in
NFC. These two e↵ects compete with each other regard-
ing neutrino heating, and the latter e↵ect dominates over
the former. We also find that the energy flux of ⌫x(ave),
averaging over ⌫x and ⌫̄x, are substantially increased in
M3F, whereas their average energy becomes lower than
the case with NFC. This trend is qualitatively in line with
results of radiation-hydrodynamic simulations of binary
neutron star merger remnant [24, 25].

We make remarks on model-dependent features on
neutrino heating. First, the impact of FFC in M2F is
less remarkable than M3F (see in the left panel of Fig. 2);
the net gain energy is ⇠ 16% lower than the case with
NFC. This indicates that ⌫e- and ⌫̄e conversions to heavy-
leptonic neutrinos are mild compared to the three fla-
vor framework, which is consistent with the di↵erence of

flavor equipartition between these frameworks. Our re-
sult exhibits the importance of three flavor framework to
quantify the actual impact of FFCs on CCSNe. Next, we
find that M3FGR has essentially the same result as M3F,
suggesting that GR e↵ects are subdominant. Quanti-
tatively speaking, however, we find neutrino cooling in
the semi-transparent region (⇠ 50km) is suppressed in
M3FGR. The lower neutrino cooling exhibits that the
number (or energy) density of ⌫e and ⌫̄e is higher than
those in the case with NFC, since the increase of neu-
trino population leads to larger blocking factor for neu-
trino emission and also higher neutrino absorption there.
The increase of neutrino number is a natural outcome
of redshift e↵ect, since the average-energy of neutrinos
becomes lower, resulting in the larger neutrino di↵usion
due to the lower opacity. Finally, we confirm that M3FH
model, which has the highest resolution with the modest
⇠, shows the essentially identical result to M3F.

In Fig. 3, we show energy-integrated angular distribu-
tions (top) and angular-integrated energy spectra (bot-
tom) for each flavor of neutrinos. Here, we again focus on
the result of M3F to discuss key rolls of FFCs in chang-
ing neutrino distributions in momentum space. The left
panels exhibit that FFC can change both angular dis-
tribution and energy spectrum of neutrinos in optically
thick region. One thing we do notice here is that an
ELN crossing appears at cos ✓⌫ ⇠ 0 in NFC, which guar-
antees that FFC occurs in M3F. The flavor conversion
is vigorous at cos ✓⌫ ⇠ 1, and the flavor equipartition
is nearly achieved in the same angular direction. ⌫̄e is
reduced more substantially than ⌫e, which seems to be
due to larger population of ⌫̄e than ⌫e in this direction.
For incoming neutrinos (cos ✓⌫ < 0), the conversion be-
comes ine�cient, but it is still noticeable for ⌫x(ave). The
substantial change of ⌫x(ave) can also be seen in the en-
ergy spectrum, whose feature is strongly dependent on
energy. In the high energy region (>⇠ 40MeV), ⌫x(ave) in
M3F is remarkably lower than NFC, whereas the di↵er-
ence between NFC and M3F is subtle for ⌫e and ⌫̄e. This
result exhibits that FFC o↵ers a new channel to absorb

Numerical setup:

Collision terms are switched on.

Fluid-profiles are taken from a 
CCSN simulation.

General relativistic effects are 
taken into account.

A wide spatial region is covered.

Three-flavor framework

Neutrino-cooling is enhanced by FFCs
Neutrino-heating is suppressed by FFCs

Impacts on the 
explodability of CCSN
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FIG. 4. Schematic pictures of neutrino rays from emission
surfaces in BNSM. Neutrinos are emitted from both hyper-
massive neutron star (HMNS) and the surrounding disk. Shell
structure in the emission surface expresses flavor-dependent
neutrino sphere.

⌫e(⌫̄e). In the early phase, we find that there are
some quantitative di↵erences from the case with
the two colliding beams; for instance, the onset
time when flavor conversion appears is delayed. This is
simply because the self-interaction potential e↵ectively
becomes weaker due to the fact that relative angles
between ⌫e and ⌫̄e is narrower than the head-on
collision. On the other hand, the overall property
is the same in the late phase; all neutrinos pass-
ing through EXZS undergo FFS, and the EXZS
stagnates stably at z ⇠ 500.

Mechanism of flavor swap.— We now turn our at-
tention to the physical mechanism of FFS. For
illustrative purpose, the symmetric colliding two-
neutrino beam model is adopted, in which ⌫e and
⌫̄e are injected with the same power from op-
posite boundaries, respectively (corresponding to
the case with ↵ = 1 in our numerical simulation).
We consider the mechanism of FFS with the ex-
pression of polarization vector of neutrinos (P )
whose third-component (hereafter denoted as P3) rep-
resents the degree of flavor eigenstate; P3 = 1 and
�1 correspond to pure ⌫e and ⌫x states, respec-
tively.

We first rewrite QKE for the symmetric col-
liding two-neutrino beam model in terms of P ,
which can be expressed as

@tP + @zP = �2µP̄ ⇥ P , (7)

@tP̄ � @zP̄ = 2µP ⇥ P̄ , (8)

where we assume that P (P̄ ) is non-trivial only
for vz = 1(�1). It should also be mentioned that
the norm of P and P̄ are constant in time and
space where they are finite. For convenience,
we perform a coordinate transformation: t

0 = t

and z
0 = z � ct. This corresponds to a coordinate

shifting with vz = 1 (we note that the coordinate
bases for t

0 and z
0 are no longer orthogonal to

each other). In the coordinate, the second time

derivative of P3 can be written as

@
2
t0P3 = �4µ2

 
1

µ

✓
(@z0P̄ )⇥ P

◆
· e3

+ (1� P̄ · P )(P3 + P̄3)

!
, (9)

where e3 denotes the thrid coordinate basis in fla-
vor space. Hereafter, let us consider the asymp-
totic state (t ! 1) of P3. In the colliding beam
model, P̄ at t ! 1 is given from a boundary con-
dition: P̄3 = 1 and @z0P̄ = 0 (since we inject ⌫̄e at
the boundary). This indicates that Eq. 9 can be
approximated as,

@
2
t0P3 ⇠ �4µ2

✓
1� (P3)

2

◆
, (10)

suggesting that the asymptotic state of neutri-
nos satisfies P3 = 1 or �1. However, P3 = 1 (i.e.,
pure ⌫e state) is clearly unstable, implying that
FFC occurs during neutrino evolution. Eq. 10
also shows that the FFC can not stop at P3 = 0
(flavor equipartition), and flavor conversion pro-
ceeds until FFS is achieved (P3 = �1).
Thie above argument illustrates the dif-

ference from cases that FFC achieves flavor
equipartitions. In the case with flavor equipar-
tition, both neutrinos and antineutrino are
co-evolved, indicating that the asymptotic state
of P̄ is determined by their interplay, lead-
ing to P̄3 ⇠ 0 at the time when @z0 P̄3 = 0 (!!!
add refs: https://arxiv.org/abs/2211.09343
https://arxiv.org/abs/2304.05044
https://arxiv.org/abs/2307.11129 ). In cases
of colliding beam models, however, the neu-
trinos and antineutrinos evolve separately,
and the asymptotic state of the other neutri-
nos/antineutrinos have already been given at the
opposite boundary, which leads to FFS.
One thing we should mention that BNSM rem-

nants can naturally o↵er the similar environments
for occurrences of FFS. As described in (!!! add
ref: https://arxiv.org/abs/1701.06580), ⌫̄e usu-
ally has higher emission than ⌫e, but the ⌫e can
dominate over ⌫̄e around the outer edge of ⌫e

sphere, leading to ELN angular crossings. On the
other hand, the BNSM system is essentially in ax-
ial symmetry. As a result, the positive ELN beam
and the negative one collides each other, which is
schematically illustrated in Fig. 4. It is, on the
other hand, unlikely for CCSNe to generate such
aspherical geometry.

Conclusions.— In this Letter, we presented the novel
dynamics of fast neutrino-flavor swap (FFS), that
would appear in the geometry of BNSMs. Since neu-
trinos in BNSMs are emitted from the surrounding disk
, broader angular distribution of neutrinos including a

- Colliding-beam model νe

νe
-
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FIG. 4. Schematic pictures of neutrino rays from emission
surfaces in BNSM. Neutrinos are emitted from both hyper-
massive neutron star (HMNS) and the surrounding disk. Shell
structure in the emission surface expresses flavor-dependent
neutrino sphere.

⌫e(⌫̄e). In the early phase, we find that there are
some quantitative di↵erences from the case with
the two colliding beams; for instance, the onset
time when flavor conversion appears is delayed. This is
simply because the self-interaction potential e↵ectively
becomes weaker due to the fact that relative angles
between ⌫e and ⌫̄e is narrower than the head-on
collision. On the other hand, the overall property
is the same in the late phase; all neutrinos pass-
ing through EXZS undergo FFS, and the EXZS
stagnates stably at z ⇠ 500.

Mechanism of flavor swap.— We now turn our at-
tention to the physical mechanism of FFS. For
illustrative purpose, the symmetric colliding two-
neutrino beam model is adopted, in which ⌫e and
⌫̄e are injected with the same power from op-
posite boundaries, respectively (corresponding to
the case with ↵ = 1 in our numerical simulation).
We consider the mechanism of FFS with the ex-
pression of polarization vector of neutrinos (P )
whose third-component (hereafter denoted as P3) rep-
resents the degree of flavor eigenstate; P3 = 1 and
�1 correspond to pure ⌫e and ⌫x states, respec-
tively.

We first rewrite QKE for the symmetric col-
liding two-neutrino beam model in terms of P ,
which can be expressed as

@tP + @zP = �2µP̄ ⇥ P , (7)

@tP̄ � @zP̄ = 2µP ⇥ P̄ , (8)

where we assume that P (P̄ ) is non-trivial only
for vz = 1(�1). It should also be mentioned that
the norm of P and P̄ are constant in time and
space where they are finite. For convenience,
we perform a coordinate transformation: t

0 = t

and z
0 = z � ct. This corresponds to a coordinate

shifting with vz = 1 (we note that the coordinate
bases for t

0 and z
0 are no longer orthogonal to

each other). In the coordinate, the second time

derivative of P3 can be written as

@
2
t0P3 = �4µ2

 
1

µ

✓
(@z0P̄ )⇥ P

◆
· e3

+ (1� P̄ · P )(P3 + P̄3)

!
, (9)

where e3 denotes the thrid coordinate basis in fla-
vor space. Hereafter, let us consider the asymp-
totic state (t ! 1) of P3. In the colliding beam
model, P̄ at t ! 1 is given from a boundary con-
dition: P̄3 = 1 and @z0P̄ = 0 (since we inject ⌫̄e at
the boundary). This indicates that Eq. 9 can be
approximated as,

@
2
t0P3 ⇠ �4µ2

✓
1� (P3)

2

◆
, (10)

suggesting that the asymptotic state of neutri-
nos satisfies P3 = 1 or �1. However, P3 = 1 (i.e.,
pure ⌫e state) is clearly unstable, implying that
FFC occurs during neutrino evolution. Eq. 10
also shows that the FFC can not stop at P3 = 0
(flavor equipartition), and flavor conversion pro-
ceeds until FFS is achieved (P3 = �1).
Thie above argument illustrates the dif-

ference from cases that FFC achieves flavor
equipartitions. In the case with flavor equipar-
tition, both neutrinos and antineutrino are
co-evolved, indicating that the asymptotic state
of P̄ is determined by their interplay, lead-
ing to P̄3 ⇠ 0 at the time when @z0 P̄3 = 0 (!!!
add refs: https://arxiv.org/abs/2211.09343
https://arxiv.org/abs/2304.05044
https://arxiv.org/abs/2307.11129 ). In cases
of colliding beam models, however, the neu-
trinos and antineutrinos evolve separately,
and the asymptotic state of the other neutri-
nos/antineutrinos have already been given at the
opposite boundary, which leads to FFS.
One thing we should mention that BNSM rem-

nants can naturally o↵er the similar environments
for occurrences of FFS. As described in (!!! add
ref: https://arxiv.org/abs/1701.06580), ⌫̄e usu-
ally has higher emission than ⌫e, but the ⌫e can
dominate over ⌫̄e around the outer edge of ⌫e

sphere, leading to ELN angular crossings. On the
other hand, the BNSM system is essentially in ax-
ial symmetry. As a result, the positive ELN beam
and the negative one collides each other, which is
schematically illustrated in Fig. 4. It is, on the
other hand, unlikely for CCSNe to generate such
aspherical geometry.

Conclusions.— In this Letter, we presented the novel
dynamics of fast neutrino-flavor swap (FFS), that
would appear in the geometry of BNSMs. Since neu-
trinos in BNSMs are emitted from the surrounding disk
, broader angular distribution of neutrinos including a

Neutrinos undergo flavor swaps in asymptotic states.

P  =  1  : electron-type

P  =  0  : equipartition

P  = -1 : heavy-lepton type

3

3

3

Unstable
Non-steady 
Stable



Collisional flavor swap
(associated with collisional instability)
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FIG. 1. Time evolution of number densities of neutrinos. Red-
and green-solid lines denote νe and νx (nνe

and nνx
), respec-

tively. Solid and dotted lines denote cases with and without
diagonal components of collision term, respectively; see text
for more details.

potential becomes zero, which corresponds to a necessary
condition for occurrences of a resonance-like evolution in
CFI (unless number densities of νx and their antipartner
(ν̄x) are largely different from each other, whose cases
are not considered in this Letter, though). We employ
a nuclear equation-of-state [40] to obtain all necessary
thermodynamical quantities for computing weak reaction
rates.

As an initial condition, we assume that all neutrinos
are in thermal and chemical equilibrium with matter, but
very small perturbations are added in off-diagonal com-
ponents of density matrix (10−6 compared to electron-
type neutrinos) to trigger flavor conversions. The chem-
ical potential for νx and ν̄x is assumed to be −2 MeV. It
should be noted that we consider the region outside the
energy sphere, which leads to the negative chemical po-
tential [41]. We assess the stability of neutrino distribu-
tions by following the prescription in [34], and confirmed
that CFI occurs with the growth rate of 5× 10−3 cm−1.
The associated timescale of CFI (tCFI) is ∼ 10−5 shorter
than the time scale of neutrino-matter interaction (tcol).
This exhibits that the flavor instability corresponds to a
resonance-like CFI, whose time scale can be roughly es-
timated as tCFI ∼

√
GFnνγ, where nν and γ denote the

number density of neutrinos and energy-averaged reac-
tion rates of neutrino matter interactions, respectively.
We solve the QKE by using MC code [42], in which we
employ a uniform energy grid from 0 MeV to 100 MeV
with 100 grid points.

Solid lines in Fig. 1 draw the dynamics of collisional
swap, while we omit to show those in antineutrinos, since
their evolution is almost identical to neutrinos. νe and
νx substantially shuffle at t ∼ 2 × 10−8 s, and then the
flavor swap almost completes by t ∼ 1 × 10−7 s. One
thing we do notice that there is no energy dependence in

the collisional swap.
Before discussing the physical process of collisional

swap in detail, we make an interesting comparison to
the case with no collision term in diagonal elements; the
results are shown as dotted lines in Fig. 1. In the early
phase, the time evolution of flavor conversions is almost
identical to the case with diagonal collision terms, which
is consistent with linear analysis. However, they devi-
ate each other from t ∼ 2 × 10−8 s, corresponding to
the time when the number of neutrinos of two flavors be-
come nearly equal. In the case without diagonal collision
terms, the system converges to a flavor equipartition with
oscillations. This exhibits that the diagonal elements in
collision terms are key elements to understand collisional
swap, which can also be shown analytically (see below).
Analytic arguments.— We discuss the collisional swap

in terms of polarization vectors in flavor spaces, which
are defined by ρ ≡ P0I/2 + P · σ/2 with

P = (2Reρex,−2Imρex, ρee − ρxx), (4)

P̄ = (2Reρ̄ex, 2Imρ̄ex, ρ̄ee − ρ̄xx), (5)

P0 = ρee + ρxx, the unit matrix I and the Pauli-matrix
vector σ. We ignore the energy dependence in flavor
conversions throughout this discussion, which is in line
with the result of our dynamical simulation. For more
convenience, we use S = P + P̄ , and D = P − P̄ instead
of P and P̄ . The QKE can be rewritten in terms of S
and D as

Ṡ = µD × S

+
Γ+ Γ̄

2
(Seq − S + (S0,eq − S0)z)

+
Γ− Γ̄

2
(Deq −D + (D0,eq −D0) z) , (6)

Ḋ =
Γ− Γ̄

2
(Seq − S + (S0,eq − S0)z)

+
Γ+ Γ̄

2
(Deq −D + (D0,eq −D0) z) , (7)

with µ =
√
2GF , Γ = Γe/2 and Γ̄ = Γ̄e/2; Γe (Γ̄e) de-

notes the reaction rate for νe (electron antineutrinos, ν̄e),
while we consider the situation with Γ > Γ̄ due to neu-
tron rich environment; z is the unit vector of z-axis in
flavor space; the index of ”eq” indicates the quantities
in the thermal equilibrium. In the initial condition, S is
headed in the positive direction along z-axis (but slightly
tilted from the z-axis due to perturbations), while D is
embedded in x − y plane (i.e., Dz = 0), and its x− and
y components represent initial perturbations.
Here we consider reasonable approximations in

Eqs. 6 and 7 so as to make the problem analytically
tractable. We assume that neutrino self-interactions are
much stronger than neutrino-matter interactions, which
guarantees tCFI & tcol. Since the collisional swap oc-
curs in nonlinear phases of CFI, its dynamical timescale

νe

νx

40
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Radial-angular distributions for survival probability of electron-type neutrinos
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FIG. 3. Same as Fig. 1 but for the model with ↵ = 0.9 (and �̄ee = 1).
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2

the method is designed so as to reproduce the spatially-
and time-averaged features of neutrino flavor conver-
sions obtained from quantum kinetic neutrino simula-
tions. The noticeable advantage in our subgrid model
is having a refinable formulation for dynamics of flavor
conversions by various ways including analytic methods
[24–27] and artificial intelligence (AI) techniques [28]. In
this paper, we also demonstrate classical neutrino trans-
port simulations with the subgrid model, in which we
employ a simple but physically motivated subgrid model
for flavor conversions.

This paper is organized as follows. In Sec. II, we start
with explaining the philosophy of our proposed method.
We then provide the quantum kinetic equation with our
subgrid model. We also provide its two-moment formal-
ism in Sec. III. These transport equations are written in
terms of the 3+1 general relativistic formulation, which
would be helpful for those who work on CCSN and BNSM
simulations. After we discuss some details of the method
in Sec. IV, we highlight novelties of our subgrid model
by comparing to other phenomenological approaches in
Sec. V. In Sec. VI, we also discuss the relevance to an-
other coarse-grained approach: miscidynamics [29]. As
shall be shown in the section, this formulation is closely
associated with our formulation, indicating that both ap-
proaches are complementary to each other. To show the
capability of our subgrid model, we demonstrate numer-
ical simulations by using both quantum kinetic neutrino
transport and classical one with subgrid model, pay-
ing attention to fast neutrino-flavor conversion (FFC) in
Sec. VII. By comparing their results, we can learn the
source of error in the subgrid model. We then discuss
strategies how to improve them based on studies of quan-
tum kinetic neutrino transport. Finally, we summarize
our work in Sec. VIII. Otherwise stated, we work in the
unit with c = h̄ = 1, where c and h̄ are the speed of the
light and the reduced Planck constant, respectively. In
this paper, we will describe all equations with the metric
signature of �+++.

II. BASIC EQUATION FOR NEUTRINO
TRANSPORT WITH BGK SUBGRID MODELING

It has been discussed that neutrino flavor conversions
have quasi-steady and asymptotic behaviors in the non-
linear phase [25–27, 30–34] or quasi-periodic properties
represented as pendulum motions in flavor space [35–39].
We are interested in the time- and spatially averaged
states in the late non-linear phase, since it is unlikely
that fine structures with short-time or small-length vari-
ations a↵ect astrophysical consequences. Motivated by
these studies, we assume that flavor conversions make
the radiation field settle into an asymptotic state, and
the asymptotic density matrix of neutrinos is denoted by
f
a.
In general, the non-linear evolution of flavor conver-

sions is very complex, and the detail hinges on flavor

instabilities, neutrino-matter interactions, and global ge-
ometries of radiation fields. On the other hand, there
is always a characteristic timescale of flavor conversions
or associated flavor instabilities, which is denoted by ⌧a

in the following discussion. We note that the timescale
depends on neutrino energy, angle, and neutrino flavor.
⌧a also provides a rough estimation of timescale that the
density matrix of neutrinos settles into f

a.
The quantum kinetic equation (QKE) for neutrino

transport can be written as

p
µ @f

@xµ
+

dp
i

d⌧

@f

@pi
= �p

µ
uµS + ip

µ
nµ[H, f ], (1)

where f denotes the density matrix of neutrinos. In the
expression, pµ, xµ, and ⌧ denote neutrino four momen-
tum, spacetime coordinates, and a�ne parameter for tra-
jectories of neutrinos, respectively. u

µ, n
⌫ , S, and H

appearing in the right hand side of Eq. 1 represent four-
velocity of fluid, the unit vector normal to the spatial hy-
persurface in four dimensional spacetimes, collision term,
and neutrino oscillation Hamiltonian, respectively. Be-
low, we approximate Eq. 1 by using f

a and ⌧a.
Our subgrid model is developed based on an assump-

tion that the neutrino distributions are relaxed to f
a

by flavor conversions in the timescale of ⌧a. This corre-
sponds to a relaxation-time approximation proposed by
Bhatnagar–Gross–Krook (BGK) [40], in which they use
the approximation to collision term in Boltzmann equa-
tion for gas dynamics. In our BGK subgrid model, we
apply the model to the neutrino oscillation Hamiltonian
(the second term in the right hand side of Eq. 1),

p
µ @f

@xµ
+

dp
i

d⌧

@f

@pi
= �p

µ
uµS + p

µ
nµ

1

⌧a
(f � f

a). (2)

We note that the relaxation-time (⌧a) is measured in lab-
oratory (or n) frame, but it can be changed based on the
fluid rest frame (see also [41]), which may be useful for
the frequently used two-moment formalism for neutrino
transport (see Sec. III). It should also be noted that f

a

and ⌧a are determined from f at each time step, implying
that they are time-dependent quantities.
It is worth noting that a similar approximation was

used to obtain a temporally coarse-grained quantum ki-
netic equation for the production of sterile neutrinos (see
Eqs. 4 and 5 of [42]). There it was proposed that the
entire right-hand side, including both oscillation and col-
lision terms, be treated using a BGK approximation.
This ansatz showed excellent agreement with numerical
results. Here we adapt the relaxation-time approxima-
tion to the context of collective neutrino oscillations by
proposing that it can be applied to oscillations alone,
with subgrid relaxation being caused by collective modes
rather than collisions.
From a practical point of view, we also provide a con-

servative form of Eq. 2, which is used for numerical sim-
ulations for both Boltzmann- and quantum kinetic neu-
trino transport (see, e.g., [41, 43]). Following [44], we can
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the method is designed so as to reproduce the spatially-
and time-averaged features of neutrino flavor conver-
sions obtained from quantum kinetic neutrino simula-
tions. The noticeable advantage in our subgrid model
is having a refinable formulation for dynamics of flavor
conversions by various ways including analytic methods
[24–27] and artificial intelligence (AI) techniques [28]. In
this paper, we also demonstrate classical neutrino trans-
port simulations with the subgrid model, in which we
employ a simple but physically motivated subgrid model
for flavor conversions.

This paper is organized as follows. In Sec. II, we start
with explaining the philosophy of our proposed method.
We then provide the quantum kinetic equation with our
subgrid model. We also provide its two-moment formal-
ism in Sec. III. These transport equations are written in
terms of the 3+1 general relativistic formulation, which
would be helpful for those who work on CCSN and BNSM
simulations. After we discuss some details of the method
in Sec. IV, we highlight novelties of our subgrid model
by comparing to other phenomenological approaches in
Sec. V. In Sec. VI, we also discuss the relevance to an-
other coarse-grained approach: miscidynamics [29]. As
shall be shown in the section, this formulation is closely
associated with our formulation, indicating that both ap-
proaches are complementary to each other. To show the
capability of our subgrid model, we demonstrate numer-
ical simulations by using both quantum kinetic neutrino
transport and classical one with subgrid model, pay-
ing attention to fast neutrino-flavor conversion (FFC) in
Sec. VII. By comparing their results, we can learn the
source of error in the subgrid model. We then discuss
strategies how to improve them based on studies of quan-
tum kinetic neutrino transport. Finally, we summarize
our work in Sec. VIII. Otherwise stated, we work in the
unit with c = h̄ = 1, where c and h̄ are the speed of the
light and the reduced Planck constant, respectively. In
this paper, we will describe all equations with the metric
signature of �+++.

II. BASIC EQUATION FOR NEUTRINO
TRANSPORT WITH BGK SUBGRID MODELING

It has been discussed that neutrino flavor conversions
have quasi-steady and asymptotic behaviors in the non-
linear phase [25–27, 30–34] or quasi-periodic properties
represented as pendulum motions in flavor space [35–39].
We are interested in the time- and spatially averaged
states in the late non-linear phase, since it is unlikely
that fine structures with short-time or small-length vari-
ations a↵ect astrophysical consequences. Motivated by
these studies, we assume that flavor conversions make
the radiation field settle into an asymptotic state, and
the asymptotic density matrix of neutrinos is denoted by
f
a.
In general, the non-linear evolution of flavor conver-

sions is very complex, and the detail hinges on flavor

instabilities, neutrino-matter interactions, and global ge-
ometries of radiation fields. On the other hand, there
is always a characteristic timescale of flavor conversions
or associated flavor instabilities, which is denoted by ⌧a

in the following discussion. We note that the timescale
depends on neutrino energy, angle, and neutrino flavor.
⌧a also provides a rough estimation of timescale that the
density matrix of neutrinos settles into f

a.
The quantum kinetic equation (QKE) for neutrino

transport can be written as

p
µ @f

@xµ
+

dp
i

d⌧

@f

@pi
= �p

µ
uµS + ip

µ
nµ[H, f ], (1)

where f denotes the density matrix of neutrinos. In the
expression, pµ, xµ, and ⌧ denote neutrino four momen-
tum, spacetime coordinates, and a�ne parameter for tra-
jectories of neutrinos, respectively. u

µ, n
⌫ , S, and H

appearing in the right hand side of Eq. 1 represent four-
velocity of fluid, the unit vector normal to the spatial hy-
persurface in four dimensional spacetimes, collision term,
and neutrino oscillation Hamiltonian, respectively. Be-
low, we approximate Eq. 1 by using f

a and ⌧a.
Our subgrid model is developed based on an assump-

tion that the neutrino distributions are relaxed to f
a

by flavor conversions in the timescale of ⌧a. This corre-
sponds to a relaxation-time approximation proposed by
Bhatnagar–Gross–Krook (BGK) [40], in which they use
the approximation to collision term in Boltzmann equa-
tion for gas dynamics. In our BGK subgrid model, we
apply the model to the neutrino oscillation Hamiltonian
(the second term in the right hand side of Eq. 1),

p
µ @f

@xµ
+

dp
i

d⌧

@f

@pi
= �p

µ
uµS + p

µ
nµ

1

⌧a
(f � f

a). (2)

We note that the relaxation-time (⌧a) is measured in lab-
oratory (or n) frame, but it can be changed based on the
fluid rest frame (see also [41]), which may be useful for
the frequently used two-moment formalism for neutrino
transport (see Sec. III). It should also be noted that f

a

and ⌧a are determined from f at each time step, implying
that they are time-dependent quantities.
It is worth noting that a similar approximation was

used to obtain a temporally coarse-grained quantum ki-
netic equation for the production of sterile neutrinos (see
Eqs. 4 and 5 of [42]). There it was proposed that the
entire right-hand side, including both oscillation and col-
lision terms, be treated using a BGK approximation.
This ansatz showed excellent agreement with numerical
results. Here we adapt the relaxation-time approxima-
tion to the context of collective neutrino oscillations by
proposing that it can be applied to oscillations alone,
with subgrid relaxation being caused by collective modes
rather than collisions.
From a practical point of view, we also provide a con-

servative form of Eq. 2, which is used for numerical sim-
ulations for both Boltzmann- and quantum kinetic neu-
trino transport (see, e.g., [41, 43]). Following [44], we can

: Relaxation-time approximation
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gain/loss by neutrino-matter interactions, respectively.
In the expression, the index i specifies the neutrino
species: ⌫i = ⌫e, ⌫̄e, ⌫µ, ⌫̄µ, ⌫⌧ , ⌫̄⌧ . The energy-
momentum tensor of neutrinos can be computed as

T↵�
⌫i

=

Z
d" "2

(2⇡)3

Z
d⌦ "n↵ n�f⌫i(",⌦) (9)

where f⌫i is the distribution function of neutrino, and
n↵ is the unit vector specifying neutrino flight directions
in four-dimensional spacetime. Note that the energy-
momentum tensor depends on space, although we omit
to show them in Eq. 9 just for simplicity.

The linear momentum carried by neutrinos per unit
time at the surface of r (P z

⌫i
which has a dimension of

[gcm/s2])) can be computed as

P z
⌫i
(r) = 2⇡r2

Z ⇡

0
T rz
⌫i
(r, ✓) sin ✓d✓, (10)

where the z�projection of the radial component of the
energy-momentum tensor, T rz

⌫i
, is given by,

T rz
⌫i

= T rr
⌫i

cos ✓ � T r✓
⌫i

sin ✓. (11)

We note that the flavor-integrated P z
⌫i

can also be eval-
uated from the volume integral of Gz

⌫i
as (see Eq. 8),

X

i

P z
⌫i
(r) =

X

i

2⇡

Z r

0

Z ⇡

0
r2 sin ✓Gz

⌫i
(r0, ✓) d✓dr0, (12)

which represents the linear momentum transfer from
matter to neutrinos. Because of the conservation of law
of total energy and momentum in the system, the fluid
needs to gain the linear momentum of the opposite sign
of Eq. 12, representing the recoil by asymmetric neutrino
emission. This leads to a NS natal kick.

In Fig. 9, we compare the species dependent P z
⌫i

as a
function of radius for both baseline (upper panel) and
FFC (lower panel) models. In baseline model (upper
panel), ⌫x is nearly spherical, and hence their linear mo-
mentum is negligible. On the other hand, ⌫e has higher
emission than ⌫̄e, while the asymmetric degree is roughly
the same to each other. As a result, the total linear mo-
mentum is in the direction of ⌫e, i.e., the northern direc-
tion (or high Ye hemisphere) in the baseline model. As
shown in the lower panel, however, FFCs substantially
change the linear momentum of neutrinos. Interestingly,
the linear momentum carried by the sum of ⌫e and ⌫̄e is in
the northern direction, and the magnitude is even larger
than the baseline model. This is attributed to the fact
that ⌫e and ⌫̄e asymmetries are enhanced and reduced
by FFCs, respectively (see Sec. IVB). Nevertheless, the
total flavor-integrated linear momentum is flipped and
pointed in the southern direction (or low Ye hemisphere),
indicating that the linear momentum carried by ⌫x and
⌫̄x overwhelm ⌫e and ⌫̄e. This is exactly what we ex-
pected in our FFC-driven NS kick scenario (see Sec. II).
The total neutrino emission is enhanced in the region
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FIG. 9. Rates of momentum transfer in the z-direction are
shown for baseline and FFC models as functions of radius
in upper and lower panels, respectively. Solid (red), dashed
(blue), dot-dashed (green), and dot-dot-dashed (black) lines
denote the rate for ⌫e, ⌫̄e, ⌫x, and ⌫̄x, respectively. Thick lines
denote the total rate.

where FFC occurs. We also find that the increase of ⌫x
asymmetry is remarkable, representing many ⌫es in the
southern direction undergo flavor conversions to ⌫x.

The di↵erence of the total linear momentum at the
outer boundary between baseline and FFC models is
⇠ 6 ⇥ 1041gcm/s2, indicating that this mechanism can
generate a linear momentum of ⇠ 1041gcm/s. This lin-
ear momentum can account for a velocity of a few hun-
dreds of km/s of NS proper motion. It should be em-
phasized, however, that the present study is meant as a
proof-of-principle, and our model is too simple to draw
robust conclusion whether the mechanism can account
for the observed velocity distributions of NS proper mo-
tions. Nevertheless, this demonstration o↵ers a possibil-
ity that globally asymmetric FFCs can induce NS natal
kick.
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Summary

Radiation-hydrodynamic simulations under classical treatments of neutrino kinetics 
have been matured in CCSN theory.

Collective neutrino oscillations, one of the quantum kinetics features of neutrinos, 
ubiquitously occur in CCSN and BNSM environments.

Fast neutrino-flavor conversion (FFC) and collisional flavor instabilities potentially 
gives a huge impact on fluid-dynamics, nucleosynthesis, and neutrino signal.

We developed a new GRQKNT code for time-dependent global simulations of 
neutrino quantum kinetics (QKE).

Global simulations are currently available, that show qualitatively different features 
of flavor conversions from those found in local simulations.

More discussions will be made for astrophysical consequences of flavor conversions.


