ハイパー核の不純物効果と ハイペロン・プローブで探る原子核構造研究

井坂政裕 理研仁科センター

Hypernucleus

- Normal nuclei
- Nucleons
 - proton
 - neutron

Hypernuclei

- Nucleons and hyperon(s) (Λ, Σ, Ξ)
- Hyperons have strange quark(s)
 - → Hypernuclei are nuclei with s quark(s)

Grand challenges of hypernuclear physics

Interaction: To understand baryon-baryon interaction

- 2 body interaction between baryons (nucleon, hyperon)
 - hyperon-nucleon (YN)
 - hyperon-hyperon (YY)

Structure: To understand many-body system of nucleons and hyperon

- Addition of hyperon(s) shows us new aspects of nuclear structure Ex.) Structure change by hyperon(s)

 - No Pauli exclusion between N and Y
 "Hyperon as an impurity in nuclei"
 - YN interaction is different from NN

Unique aspects of Λ hypernuclei

- ullet Λ has no Pauli blocking to nucleons
- ΛN attraction (different from NN)

Unique phenomena

Structure change:

Genuine hypernuclear (super symmetric) states:

<u>A unique probe</u>: Λ can penetrate into nuclear interior

Structure change by Λ : "Shrinkage effect"

Shrinkage effect: Λ makes nucleus compact

T. Motoba, et al., PTP 70, 189 (1983); T. Motoba, et al., PTPS 81, 42(1985).
E. Hiyama, et al., Phys. Rev. C59 (1999), 2351.
K. Tanida, et al., Phys. Rev. Lett. 86 (2001), 1982.

- ${}^{6}\text{Li:} \alpha + d$ cluster structure
- Λ hyperon penetrates into the nuclear interior
- Λ hyperon reduces α + d distance \longrightarrow B(E2) reduction (Observable)

Structure change by Λ : "Glue-like role"

Glue-like role: Λ hyperon stabilizes unbound state

Example: ${}^9_\Lambda Be$

- ⁸Be is an unstable nucleus
 - Its g.s. lies at about 100 keV above $\alpha + \alpha$ threshold
- ${}^{9}{}_{\Lambda}$ Be is bound with an $\alpha + \alpha + \Lambda$ structure

⁸Be

(unbound)

⁹_^Be

Genuine hypernuclear (super symmetric) state

Genuine hypernuclear states cannot be formed in ordinary ⁹Be

Observed Λ hypernuclei

Λ hypernuclei observed so far

- Concentrated in light Λ hypernuclei
- Most of them have well pronounced cluster structure

Taken from O. Hashimoto and H. Tamura, PPNP **57**(2006),564.

Toward heavier and exotic Λ hypernuclei

Experiments at JLab and J-PARC etc.

• Hypernuclear chart will be extended to heavier regions "Structure of hypernuclei"

Structure study of such hypernuclei becomes one of interesting topics

Purpose of this study

Purpose

- To reveal structure of Λ hypernuclei in *p*-s*d* shell and n-rich region
 - "Structure change"
 - " Λ as a probe to study nuclear structure"

Individual problems (In this talk)

- \bullet Possible structure changes caused by Λ
 - Deformation change by adding Λ
 - Structure of n-rich Be

ullet Probing nuclear deformation by using Λ

– ${}^{27}{}_{\Lambda}Mg:$ to reveal triaxial deformation of ${}^{26}Mg$

Recent achievements in (hyper)nuclear physics

Knowledge of ΛN interaction

- Study of light (s, p-shell) Λ hypernuclei
 - Accurate solution of few-body problems ^[1]
 - ΛN G-matrix effective interactions ^[2]
 - Increases of experimental information ^[3]

Development of theoretical models

Through the study of unstable nuclei

Ex.: Antisymmetrized Molecular Dynamics (AMD)^[4]

- AMD can describe dynamical changes of various structure
- No assumption on clustering and deformation

Recent developments enable us to study structure of Λ hypernuclei

[1] E. Hiyama, NPA **805** (2008), 190c, [2] Y. Yamamoto, *et al.*, PTP Suppl. **117** (1994), 361., [3] O. Hashimoto and H. Tamura, PPNP **57** (2006), 564., [4] Y. Kanada-En'yo *et al.*, PTP **93** (1995), 115.

Theoretical framework: HyperAMD

We extended the AMD to hypernuclei

HyperAMD (Antisymmetrized Molecular Dynamics for hypernuclei)

Hamiltonian

 $\hat{H} = \hat{T}_{_N} + \hat{V}_{_{NN}} + \hat{T}_{_{\Lambda}} + \hat{V}_{_{\Lambda N}} \quad \begin{array}{l} \text{NN: Gogny D1S} \\ \Lambda \text{N: YNG interaction} \end{array}$

Wave function

• Nucleon part: Slater determinant Spatial part of single particle w.f. is described as Gaussian packet

- Single particle w.f. of Λ hyperon: Superposition of Gaussian packets
- Total w.f.:

$$\psi(\vec{r}) = \sum_{m} c_{m} \varphi_{m}(r_{\Lambda}) \otimes \frac{1}{\sqrt{A!}} \det[\varphi_{i}(\vec{r}_{j})]$$

$$\varphi_{N}(\vec{r}) = \frac{1}{\sqrt{A!}} \det[\varphi_{i}(\vec{r}_{j})]$$

$$\varphi_{i}(r) \propto \exp\left[-\sum_{\sigma=x,y,z} v_{\sigma}(r-Z_{i})_{\sigma}^{2}\right] \chi_{i}\eta_{i} \quad \chi_{i} = \alpha_{i}\chi_{\uparrow} + \beta_{i}\chi_{\downarrow}$$

$$\varphi_{\Lambda}(r) = \sum_{\sigma=x,y,z} c_{m}\varphi_{m}(r)$$

$$\varphi_{m}(r) \propto \exp\left[-\sum_{\sigma=x,y,z} \mu v_{\sigma}(r-z_{m})_{\sigma}^{2}\right] \chi_{m} \quad \chi_{m} = a_{m}\chi_{\uparrow} + b_{m}\chi_{\downarrow}$$

Theoretical framework: HyperAMD

Procedure of the calculation

Variational Calculation $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$ $\kappa < 0$ • Imaginary time development method $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$ $\kappa < 0$ • Variational parameters: $X_i = Z_i, z_i, \alpha_i, \beta_i, a_i, b_i, v_i, c_i$

Actual calculation of HyperAMD

Energy variation with constraint on nuclear quadrupole deformation

Actual calculation of HyperAMD

Energy variation with constraint on nuclear quadrupole deformation

Ex.) ⁸Be

Actual calculation of HyperAMD

Energy variation with constraint on nuclear quadrupole deformation

For hypernuclei

Theoretical framework: HyperAMD

Procedure of the calculation

• Imaginary time development method $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$

• Variational parameters: $X_i = Z_i, z_i, \alpha_i, \beta_i, a_i, b_i, v_i, c_i$

Angular Momentum Projection

$$\left|\Phi_{K}^{s};JM\right\rangle = \int d\Omega D_{MK}^{J^{*}}(\Omega) R(\Omega) \Phi^{s+}$$

Generator Coordinate Method(GCM)

•Superposition of the w.f. with different configuration •Diagonalization of $H^{J\pm}_{sK,s'K'}$ and $N^{J\pm}_{sK,s'K'}$

$$H_{sK,s'K'}^{J\pm} = \left\langle \Phi_{K}^{s}; J^{\pm}M \left| \hat{H} \right| \Phi_{K'}^{s'}; J^{\pm}M \right\rangle$$
$$\left| \Psi^{J\pm M} \right\rangle = \sum_{sK} g_{sK} \left| \Phi_{K}^{s}; J^{\pm}M \right\rangle$$
$$\left| \Psi^{J\pm M} \right\rangle = \sum_{sK} g_{sK} \left| \Phi_{K}^{s}; J^{\pm}M \right\rangle$$

 $\kappa < 0$

Application of HyperAMD to $^{7}_{\Lambda}$ Li

Structure change by Λ

• Nuclear deformation change by Λ (in *s* and *p* orbits)

Examples: ${}^{9}_{\Lambda}$ Be, ${}^{13}_{\Lambda}$ C, ${}^{20}_{\Lambda}$ Ne and ${}^{21}_{\Lambda}$ Ne M. Isaka, et. al., PRC 83 (2011), 044323.

Structure change of neutron-rich Be

Changes of the level structure in ${}^{12}_{\Lambda}$ Be

H. Homma, M. Isaka, M. Kimura, PRC **91** (2015), 014314.

Deformation change by Λ in *s*-orbit

Deformation change by Λ in *s*-orbit

• Many authors predict the deformation change by Λ in *s*-orbit

Ex.) Deformation change in ${}^{13}_{\Lambda}$ C predicted by RMF calc.

Bing-Nan Lu, et al., Phys. Rev. C 84, 014328 (2011)

M. T. Win and K. Hagino, Phys. Rev. C 78, 054311(2008)

Deformation change by Λ in *p*-orbit

Λ binding energy

- laces Variation of the Λ binding Energy
- Λ in *s*-orbit is deeply bound at smaller deformation
- Λ in *p*-orbit is deeply bound at larger deformation

Variation of the Λ binding energies causes the deformation change (reduction or enhancement)

Structure change by Λ

• Nuclear deformation change by Λ (in *s* and *p* orbits)

Examples: ${}^{9}_{\Lambda}$ Be, ${}^{13}_{\Lambda}$ C, ${}^{20}_{\Lambda}$ Ne and ${}^{21}_{\Lambda}$ Ne M. Isaka, et. al., PRC 83 (2011), 044323.

Structure change of neutron-rich Be

Changes of the level structure in ${}^{12}_{\Lambda}$ Be

H. Homma, M. Isaka, M. Kimura, PRC **91** (2015), 014314.

Structure of neutron-rich nuclei

Ex.) Be isotopes

- Exotic cluster structure exists in the ground state regions
- Be isotopes have a 2α cluster structure
 - 2α cluster structure is changed depending on the neutron number

What is happen by adding a Λ to these exotic cluster structure ?

Exotic structure of ¹¹Be

- Parity inverted ground state of the ¹¹₄Be₇
 - The ground state of ¹¹Be is 1/2⁺,

while ordinary nuclei have a $1/2^-$ state as the ground state

Vanishing of the magic number N=8

Exotic structure of ¹¹Be

- ◆ Parity inversion of the ¹¹Be₇ground state
 - The ground state of ¹¹Be is 1/2⁺

• Main reason of the parity inversion: molecular orbit structure

• ¹¹Be has 2α clusters with 3 surrounding neutrons

 \rightarrow Extra neutrons occupy molecular orbits around the 2 α cluster

[1] Y. Kanada-En'yo and H. Horiuchi, PRC 66 (2002), 024305.

 $^{11}\text{Be }1/2^{-}$

Excitation spectra of ¹¹Be

• Deformation of the 1/2⁻ state is smaller than that of the 1/2⁺ state

Excitation spectra of ¹¹Be

Deformation of the 1/2⁻ state is smaller than that of the 1/2⁺ state
 Difference in the orbits of extra neutrons

[1] Y. Kanada-En'yo and H. Horiuchi, PRC 66 (2002), 024305.

What is happen by Λ in these states with different deformations?

Deformations are reduced? Parity-inverted ground state changes?

Results: Parity reversion of ${}^{12}_{\Lambda}$ Be

♦ Ground state of ¹²[∧] Be

Results: Parity reversion of ${}^{12}_{\Lambda}$ Be

- Ground state of ${}^{12}_{\Lambda}$ Be
 - The parity reversion of the ${}^{12}{}_{\Lambda}$ Be g.s. occurs by the Λ hyperon

Deformation and Λ binding energy

- Λ slightly reduces deformations, but the deformation is still different
- A hyperon coupled to the $1/2^-$ state is more deeply bound than that coupled to the $1/2^+$ state
 - Due to the difference of the deformation between the $1/2^-$ and $1/2^+$ states

Difference of deformation in ¹¹Be can be confirmed by parity-reversion

In the other Be Λ hyper-isotopes

- B_{Λ} is different depending on deformations
- Deformations: mainly comes from developments of 2α cluster structure

M. Isaka, M. Kimura, PRC, in press

Difference of ${\rm B}_{\Lambda}$ depending on deformation

 \mathbf{B}_{Λ} is different among the ground, ND and SD states

M. Isaka, et al., PRC89, 024310 (2014)

Probing nuclear deformation by using Λ

Example: Triaxial deformation of Mg

²⁵ Mg: M. Isaka, *et al.*, PRC **87**, 021304R (2013)

²⁷_{Λ}Mg: **Recent result** \leftarrow ^{By future experiment at JLab ²⁷_{Λ}Mg: **Recent result** \leftarrow ^{By future experiment at JLab ²⁷Al(e, e'K⁺)²⁷_{Λ}Mg?}}

Deformation of nuclei

- Many nuclei manifests various quadrupole deformation (parameterized by quadrupole deformation parameters β and γ)
- Most of them are prolate or oblate deformed (axially symmetric)

Triaxial deformation of nuclei

Triaxial deformed nuclei are not many, Mg isotopes are the candidates

Ex.) ²⁴Mg, ²⁶Mg

•Largely deformed nuclei (far from magic number)

Low-lying 2nd 2⁺ indicates having the triaxial deformation

Deformation of nuclei

- Triaxial deformed nuclei are not many
- Its identification is not easy

" Λ in p orbit can be a probe to study nuclear (triaxial) deformation" What happens when a Λ in p orbit is coupled to triaxial deformation?

Coupling of Λ in *p*-orbit: *p*-states of ${}^{9}_{\Lambda}$ Be

 ${}^{9}_{\Lambda}$ Be: axially symmetric 2 α clustering

Two bands will be generated as *p*-states ^[1,2]

- Anisotropic p orbit of Λ hyperon
- Axial symmetry of 2α clustering

 \rightarrow *p*-orbit parallel to/perpendicular to the 2 α clustering

Split of *p*-state in ${}^{9}_{\Lambda}$ Be

• ${}^{9}_{\Lambda}$ Be with 2 α cluster structure

H. Bando, et al., IJMP **21** (1990) 4021.

p-states splits into 2 bands depending on the direction of *p*-orbits

Triaxial deformation

If ²⁶Mg is triaxially deformed nuclei

→ *p*-states split into 3 different state

Triaxial deformation

If ²⁶Mg is triaxially deformed nuclei

→ *p*-states split into 3 different state

Small overlap leads to shallow binding

Observing the 3 different *p*-states is strong evidence of triaxial deformation Our (first) task: To predict the level structure of the *p*-states in ${}^{27}{}_{\Lambda}$ Mg

Purpose

- Purpose and problem
 - To reveal triaxial deformation of ²⁶Mg, we will predict the level structure of the p states in ${}^{27}{}_{\Lambda}$ Mg
 - ${}^{27}\Lambda Mg$
 - *p*-states will split into **3 different states**, if ²⁶Mg is triaxially deformed

Energy variation with constraints on (β, γ)

• Energy variation at each set of (β , γ) with parity projection

 \rightarrow Energy surface on (β , γ) plane

• In ${}^{27}{}_{\Lambda}$ Mg, we also impose constraint potential on Λ s.p. orbit to calculate Λ in p-states: $V_f = \lambda \sum_f |\varphi_f\rangle \langle \varphi_f |$

Energy surface on (β , γ) plane

- "*p*-states" of ${}^{27}{}_{\Lambda}$ Mg: Λ particle in *p* orbit
 - 3 kinds of p states appear by the energy variation with constraints
 - With different spatial distribution of Λ (in $\gamma \simeq 30$ deg. region)

Results : Single particle energy of Λ hyperon

• Λ single particle energy on (β , γ) plane

$$\varepsilon_{\Lambda}(\beta,\gamma) = E_{\Lambda p}(\beta,\gamma) - E_{core}(\beta,\gamma)$$

$^{27}_{\Lambda}$ Mg (AMD, Λ in p orbit)

 \bullet Single particle energy of Λ particle is different from each p state

– This is due to the difference of overlap between Λ and nucleons

Results : Single particle energy of Λ hyperon

• Λ single particle energy on (β , γ) plane

$$\varepsilon_{\Lambda}(\beta,\gamma) = E_{\Lambda p}(\beta,\gamma) - E_{core}(\beta,\gamma)$$

$^{27}_{\Lambda}$ Mg (AMD, Λ in p orbit)

 \bullet Single particle energy of Λ particle is different from each p state

– This is due to the difference of overlap between Λ and nucleons

Results : Single particle energy of Λ hyperon ϵ_{Λ}

 Λ s. p. energy is different from each other with triaxial deformation

Results: Excitation spectra

- 3 bands are obtained by Λ hyperon in *p*-orbit \rightarrow Splitting of the *p* states
 - ²⁶Mg \otimes Ap(lowest), ²⁶Mg \otimes Ap(2nd lowest), ²⁶Mg \otimes Ap(3rd lowest)

Summary

Knowledge of YN interaction will allow us to reveal structure of hypernuclei

- Structure change and modification of nuclear properties by adding a hyperon
- Bounding unbound systems by using hyperons as a glue
- Probing nuclear structure (deformation) by using hyperon

Combination of the modern YN interaction with nuclear models

Antisymmetrized molecular dynamics + effective YN interaction

Structure changes caused by Λ

- Λ in *p*-orbit enhances the nuclear deformation, while Λ in *s*-orbit reduces it.
- Difference of the Λ binding energy causes the changes of the excitation spectra: Ground state parity of ${}^{12}{}_{\Lambda}{\rm Be}$

Probing nuclear deformation by using Λ

– Splitting of the p orbits in ${}^{27}{}_{\Lambda}$ Mg due to triaxial deformation