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Degeneracy	  of	  dense	  nuclear	  maDer

BCS	  condensa^on	  in	  neutron	  stars

Degeneracy	  of	  electrons	  in	  solid	  states

Superconduc^vity	  in	  metals	  

Degeneracy	  of	  liquid	  3He

Superfluidity	  of	  liquid	  3He

Fermion	  condensa^on	  in	  cold	  atoms

Cold Universe

Lowest	  manmade	  temperature	  (450	  pK	  @	  MIT)

neutron	  SF	  &	  proton	  SC	  in	  NS	  interiors Wikipedia

Tc ⇠ 0.001TF

Tc ⇠ 0.001TF

Tc ⇠ 0.001TF

Tc ⇠ 0.1TF

� ⇠ 0.1EF

Kasahara	  et	  al.,	  PNAS	  (2014)

FeSe



3He & Neutron Stars
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1982 Thouless-‐Kohmoto-‐NighJngale-‐Nijs	  (1985	  Kohmoto)
1984 Geometric	  (Berry)	  phase

BCS	  theory

Pulsar	  discovered:	  Hewish	  &	  Bell
Pulsar	  Glitches	  observed	  in	  Vela	  
SF	  in	  NS:	  Baym,	  Pethick,	  &	  Pines

Discovery	  of	  SF	  in	  3He

Anderson-‐Morel	  
Generaliza^on	  of	  BCS

Migdal:	  predic^on	  of	  BCS	  in	  NS
� ⇠ 1 MeV

Balian-‐Werthamer	  
most	  symmetric	  p-‐wave

Spin	  fluctua^on:	  Layzer-‐Fay

Exo^c	  SC	  in	  U-‐compounds

Suppression	  of	  s-‐wave	  SF:	  Wolf

1980 Observa^on	  of	  amplitude	  Higgs

1986
1988

2008-‐ Topological	  periodic	  table

Topology	  of	  SF	  phases	  	  
in	  NS?

Weyl	  fermions	  in	  3He-‐A:	  Volovik
Topology	  in	  3He-‐B:	  Salomaa-‐Volovik

1997 Observa^on	  of	  chiral	  anomaly(?) 2011 3P2	  in	  NS	  core(?):	  Page	  et	  al.

3P2:	  Tamagaki	  &	  Hofferberg-‐Glassgold-‐	  
	  	  	  	  	  	  	  	  Richardson-‐Ruderman



Pairing Symmetry

Spin Orbital Candidate

singlet	  s-‐wave Odd Even Many	  metals,	  Fe-‐based	  compounds	  
(mul^ple	  gaps)

singlet	  d-‐wave Odd Even High-‐Tc	  cuprates,	  CeCoIn5,	  URu2Si2

triplet	  p-‐wave Even Odd
3He,	  Sr2RuO4(?),	  UBe13(?),	  UCoGe,	  
CuxBi2Se3(?),	  …	  &	  Neutron	  stars(?)

triplet	  f-‐wave Even Odd UPt3

Several	  candidate	  materials	  for	  topological	  or	  Weyl	  superconductors	  

but	  their	  pairing	  symmetries	  are	  s^ll	  controversial…

3He	  is	  one	  of	  established	  topological	  &	  Weyl	  SC/SF
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Also important is the temperature Tmax*
at which one finds maximum attenuation or max-
imum rate of change with temperature of the
velocity. Under the simplest assumptions this
temperature corresponds to wT = 1, where v
is the relaxation time for velocity, which is
assumed to have a T ' temperature dependence.
However, mare generally one would expect
~'"/Tmax* to be a. constant at the maximum.
Table II shows the results of an analysis of
this point, both for the present experiments
and for those of Ref. 3. Inspection of the table

I86 I I iI I I IIII I I I I I IIII I

FIG. 2. Amplitude attenuation coefficient and sound
propagation velocity as a function of magnetic tempera-
ture in pure liquid He3 at 0.32 atm and for frequencies
of 15.4 and 45.5 MHz. Each point shown on the graph
is the average of several raw data points. The straight
line drawn through the low-temperature attenuation da-
ta represents Eq. (1), while the straight lines drawn
through the high-temperature data represent Eq. (2),
with u/27r equal to 15.4 and 45.5 MHz. With the present
gap it was not possible to measure the 45.5-MHz atten-
uation coefficient above e =200 cm . The smooth
curve just above the attenuation data for 15.5 MHz is a
plot of Eq. (6) with cd/27I =15.4 MHz and eo and 0.

& given
by Eqs. (1) and (2).

15.4
15.4
45.5
15.4

1.44
1.57
l.58
1.62

2.74
2.65
2.66
2.65

shows that, in the case of attenuation measure-
ments, in which Tmax* is well determined,
the frequency dependence is quantitatively veri-
fied. It is difficult to estimate Tm~ from
the velocity measurements, so the scatter is
greater. However, it seems clear from these
data that the transition observed in Ref. 3 is
indeed to be attributed to a transition from first
to zero sound.
Our results can also be compared with the

theory of Khalatnikov and Abrikosov' in which
the velocity of zero sound is found to be given
by the implicit equation

1 + ,'E, —
Eo(l +—,'E, ) + so'E, '

(4)

For the values given above for the parameters
in Eq. (4), one finds T,T'=1.5xlp "secK".

where zo(s, ) =1(s,/2) ln[(s, +1)/(s, -l)]f-l, sp
=cp/vF, and vF is the Fermi velocity. Recent-
ly determined' values of the Fermi-liquid param-
eters are Eo:10 77 +,:6 25 and vF:53 8
m/sec for a pressure of 0.28 atm (close to the
present one). At this pressure c, =187.2 m/sec.
Solving Eq. (3) for s, one finds s, = 3.597 [and
M (s,) = 0.027 033]. This leads to [(cp-cl )/
cl]p 28 atm

——0.034, in remarkable agreement
with the measured value at 0.32 atm of 0.035
+ 0.003. Using a theory for energy transfer
from a solid to liquid He', Keen, Matthews,
and Wilks' found (c,-c,)/c, =0.10+0.03, a larger
effect than observed here. Assuming the es-
sential correctness both of the experirgents
of Ref. 3 and of the present ones, the discrep-
ancy in the value of (co—c,)/c, must be attributed
to an inadequacy of the theory explaining ener-
gy transfer into the liquid.
In regard to attenuation, at high temperatures

one expects'

Normal 3He & Dense Nuclear Matter

Ferromagne^c	  spin	  fluctua^ons

Layzer-‐Fay,	  Int.	  J.	  Magn.	  1,	  135	  (1971)

Crossover	  from	  1st	  sound	  to	  zero	  sound

Abel-‐Anderson-‐Wheatley,	  PRL	  (1966)
3He	  atom

Normal	  3He:	  Fermi	  liquid	  w/	  large	  effec^ve	  mass
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spin	  triplet	  p-‐wave	  is	  the	  dominant	  pairing	  channel	  
subdominant	  f-‐wave	  pairing



3P2	  pairingmost	  symmetric	  p-‐wave	  pairing

Balian-‐Werthamer	  (1963)

spin orbital
SO(3)L�S ⇥U(1)

Spontaneous	  spin-‐orbit	  symmetry	  breaking:	  Emergence	  of	  spin-‐orbit	  interacEon

spin momentum
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G = SO(3)S ⇥ SO(3)L ⇥U(1)⇥ T ⇥ C

A

B

Symmetry	  of	  Normal	  3He
spin	  rota^on momentum

Superfluid 3He

Balian-‐Werthamer	  (BW)	  state

Spin	  triplet	  p-‐wave	  order	  parameter

spin momentum

Lz = 1

Anderson-‐Brinkman-‐Morel	  
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Sz = 0 Lz = 1

7! J = 0

Aµi = �Ad̂µ(m̂+ in̂)i

Aµi = �B�µi

(k
x

� ik
y

)|S
z

= 1i+ k
z

|S
z

= 0i+ (k
x

+ ik
y

)|S
z

= �1i



Symmetry	  group	  of	  3He
neglect	  small	  residual	  interac^on	  (dipole	  int.)

A-phaseB-phase

spin orbital

Spin	  &	  Orbital	  states	  are	  orderedSpin-‐orbit	  locked	  phase

Symmetry Breaking in Superfluid 3He
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Im!zzðq;!L; z; z

0Þ
!L

;

(4)

where Pðq; zeÞ is the static form factor of the electron
(obtained from Fourier transforming the xy coordinates
of the probability density of a single electron), Aþ is the
component of the interaction that flips the electron spin
with respect to the direction of the Zeeman field, z (z0) and
ze (z0e) are the z coordinates of the 3He atoms and the
electron respectively, and !L ¼ g"B=@ is the Larmor
frequency of the electron. This formula would look like
the standard NMR relaxation formula [28] if we drop out
the z dependence, the electron form factor P, and restore
the isotropy of the dynamic spin susceptibility. Equation
(4) implies the dependence of 1=T1 on the direction of the
Zeeman field, because Aþ couple Iz to the component of
the electron spin perpendicular to the Zeeman field.

To illustrate this dependence on the Zeeman field direc-
tion, we consider a simple contact interaction model for the
coupling between the electron and 3He atom spins. If we
set the magnetic field direction as ẑ0 ¼ ẑ cos#þ x̂ sin#, we
can write down the contact interaction as Hcontact ¼
&AcontactIzSz ¼ &AcontactIz½Sz0 cos# & 1

2 ðSþ þ S&Þ sin#(,
giving us Aþ ¼ Acontact sin#. Inserting this into Eq. (4), we
obtain 1=T1 / sin2#. In other words, the electron spin does
not relax at all for perpendicular field. By contrast, the
same model gives us 1=T1 independent of # for the surface
state of the simplest TI, q summation canceling out the
spin susceptibility anisotropy.

Realistic calculation can still give us this drastic anisot-
ropy of spin relaxation. In 3He-B, the main channel of spin-
spin coupling is the dipole-dipole interaction, mainly be-
cause an electron strongly avoids contact with 3He atoms.
With the dipole-dipole interaction, we do have coupling
between Iz and Sx;y:

HD¼&"0

4$

r2!e )!He&3ð!e )rÞð!He )rÞ
r5

¼& "0g"B%@
4$ðr2kþz2Þ5=2

Iz½ðr2k&2z2ÞSz&3zðxSxþySyÞ(;

(5)

where % is the gyromagnetic ratio of a 3He atom and g is
the Landé g factor of an electron. However, for the electron
below the liquid surface, the Sx;y terms of Eq. (5) may have
little effect; because z > 0 for helium atoms ‘‘below’’ the
electron and z < 0 for helium atoms ‘‘above’’ the elec-
trons, the coupling to Sx;y from the helium atoms above
cancels out the coupling to Sx;y from the helium atoms
below. Since the spin interaction is effectively Ising (that
is, HD / &IzSz), we have 1=T1 / sin2#, as we argued in
the previous paragraph. By multiplying sin# to the 2D
Fourier transform on the coefficient of the IzSz term of

Eq. (5), we obtain Aþðq; zÞ ¼ & "0g"B%@
2 qe&qjzj sin#. As

the next step, we need to devise an experimental setup to
relax the electron spin by the 3He-B surface state.
Electron bubble.—A crucial constraint on the relaxation

rate is how well the electron is localized. Whereas in the
NMR, we can assume that a nucleus is a pointlike object,
we cannot make the same assumption for electrons in ESR
and hence the introduction of the static form factor PðqÞ in
Eq. (4). Because of the Heisenberg uncertainty principle,
the more delocalized the electron is in the real space, the
more rapidly PðqÞ falls off with q. This suppresses the spin
relaxation for processes that result in a large momentum
change for 3He atoms and hence suppresses 1=T1. For this
reason, 1=T1 is very small for an electron sitting on top of
the 3He liquid surface. Even when electrons above the
surface form a Wigner crystal, the zero-point displacement
is greater than 10% of the lattice constant for the lattice
constant &1 "m [29]. In order to enhance the electron
localization significantly, we need to place the electron
under the 3He liquid surface.
Once it is injected below the 3He liquid, an electron

settles into a well-localized metastable state below the
surface. It cannot be easily ejected from the liquid due to
an electrostatic energy barrier at the surface arising from
the induced polarization of 3He atoms. By tuning the
electric field perpendicular to the surface, we can adjust
the equilibrium distance jbj between the electron and
the liquid surface to be as close as 10 nm [30,31]. Below
the liquid surface, an electron opens up a nanosized cavity
and becomes trapped inside of it to avoid the energy cost
due to the negative electron affinity of helium atoms. The
size of this ‘‘bubble’’ is determined by competition be-
tween the zero-point kinetic energy of the confined elec-
tron EZP ¼ h2=ð8mR2Þ and the surface energy of the cav-
ity ES ¼ 4$R2&, where R is the cavity radius and

FIG. 1 (color online). Illustration of the surface state of the
3He-B phase consisting of a single Majorana cone, where the
E< 0 part of the quasiparticle spectrum (with the dashed
boundary) is redundant. Also shown are the dimensions of the
bubble electron when we apply a perpendicular electric field of
150 V=cm. Note how small the size and depth of the bubble are
compared to the depth ' of the surface state, for which we take
the weak coupling approximation @vF=! as in Eq. (3).
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Topological insulator Bi2Se3�

%Strong spin-orbit coupling 

%Nonzero topological number Z2�

%Helical Dirac Cone as a surface state�

Electronic band structure of Bi2Se3 measured by ARPES�

Bi2Se3�

Y. L. Chen et al. Science 329, 659 (2010)�

Crystal structure Bi2Se3�

TI	  w/	  surface	  Dirac	  fermions

3He-‐B:	  Surface	  Majorana	  fermion

Weyl	  semi-‐metals

Salomaa-‐Volovik	  (88);	  	  
Schnyder-‐Ryu-‐Furusaki-‐Ludwig	  (08);	  Qi-‐Hughes-‐Zhang	  (09);	  	  

Volovik	  (09);	  Chung-‐Zhang	  (09);	  Nagato-‐Higashitani-‐Nagai	  (09),	  …

Par?cle-‐hole	  symmetry

3He-‐A:	  Weyl	  Superfluid
Volovik,	  JETP	  LeL	  43,	  551	  (1986);	  	  

Combescot	  and	  Dombre,	  PRB	  33,	  79	  (1986)

Review:	  TM,	  Y.	  Tsutsumi,	  T.	  Kawakami,	  M.	  Sato,	  M.	  Ichioka,	  K.	  Machida,	  JPSJ	  85,	  022001	  (2016)

Time/Inversion	  
sym.	  breaking

3He: Paradigm for Topological Phenomena
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winding	  number:	  Topological	  invariant

Quan]za]on	  of	  magne]c	  flux
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Topology in Real Space



d-‐dim.	  
Brillouin	  zone

target	  space

the	  map	  of	  k-‐points	  to	  	  
the	  Hilbert	  space	  (S2)

occupied

empty	  band

Fermi	  level

Minimal	  Hamiltonian:	  2x2	  Hermi?an	  matrix

H(k) =

✓
m0 +m

z

m
x

� im
y

m
x

+ im
y

m0 �m
z

◆
7!

X

j

m̂
j

(k)�
j

uniquely	  parameterized	  with	  unit	  vector	  (=S2)

trivialtopologically	  nontrivial

Topology in Momentum Space

fermion	  
excita]on



Quantum)Hall)Effect)Flux)Quan0za0on)

H
all conductance

�
14�
10�
6�
2�
S2�
S6�
S10�
S14�

Carrier Density�

Momentum-Space Topo. Numbers�

Φ= ℎ/2$ &�

Real)Space)

&=$ 1/Φ↓0  ∫↑▒+,+-  $[/×0(2)]5 �

kSspace)

Real-Space Topo. Numbers�

Two Kinds of Topological Quantum Phenomena �

Topological 
invariant numbers�

Conduc]on	  band

Valence	  band

EF

Thouless-‐Kohmoto-‐Nigh]ngale-‐Nijs,	  PRL	  49,	  405	  (1982)	  
Kohmoto,	  Ann.	  Phys.	  160,	  343	  (1985)

hall	  conductance
Quan]za]on	  of	  	  
Hall	  conductance

Bulk	  topology

�
xy

=
e2

h
⌫

=	  Chern	  number	  (winding	  number)	  
topological	  invariant	  in	  k-‐space	  (BZ)

⌫

B. I. HAI.PERIN

FIG. 1. Geometry of sample. Annular film, in re-
gion PI &r & rg ls placed ln uniform IIlagnetlc flield 80,
pointing out of the page. Additional magnetic flux 4 is
confined to region r & r~. Curved arrows show direction
of currents II and I2 at the boundaries of film.

azimuthal (8) direction, and the magnitude of A
depends only on the distance from the center of
the annulus:

(2)

Away from the edges of the film, the electronic
states 1n this geometry have the form

„(r)=constxe' sf,(r r), —
where m and v are integers, with v& 0, f„is the
v+1 eigenstate of a one-dimensional harmonic os-
cillator, and the radius r is determined by

Boer~ =m@0—4 .
Here 40 is the flux quantum, hc/e. The width off is of order r„where r, is the cyclotron radius.
Of course, Eq. (3) is only applicable if r~ is in the
range r& &r &r2, with r —r& and r2 —r large
compared to r, . %e shall assume throughout that
r, is small compared to r~ and r2—r~. The ener-
gies of the states (3) are given by the Landau for-
mula

E „=%co,(v+ , ), —

where co, is the cyclotron frequency determined by
the field 80 and the carrier effective mass m ~:

co, = ie8u i/m'c .
The dectron density

i 1(,(r) i
associated with

Eq. (3) is symmetric about the radius r~, and de-
cays rapidly for i r r

i /ro)) 1. Th—e current
carried by the state is given by

J dr[@ i
(r r). —

The integral may be taken over the radial coordi-
nate r, at any fixed value of 8. The net current
vanishes for states in the interior of the annulus,
since the probability densities of the harmonic os-
cillator states are symmetric about the point r =r~.
The situation is very different when r is closer

than a few times r, to an edge of the sample.
Then the condition that the wave function vanish
at the edges of the sample will shift the energies of
the eigenstates away from the Landau energies (5).
I.et us focus our attention on the behavior near

the outer edge of the annulus, and let us continue
to use the index v to label the number of nodes in
the radial wave function. We may then write the
electronic wave functions as

P~,( r )=const Xe' g (r rr2 r)——,
where g,(x,s) is a wave function which is defined
in the region —00 &x &s and has v nodes, which
vanishes for x~s and x~—00, and which obeys
the eigenvalue equation

Now it is clear that the eigenvalue E~ „mill ap-
proach the value E„=fico,(v+ —, ), for
r2 —r )g r, . The energy E,will increase mono-
tonically as r~ increases, passing through the value
E „=Pm, (2v+ —,), when r =r2, and increasing
eventually as (r~ rz) e Bo/2m—*c for
r~ —r2) r, . The energy curve is sketched in Fig.
2.

FIG. 2. Energy levels of nonrandom system, in units
of %co„as a function of the parameter r . The latter
quantity i.s determined by the azimuthal quantum num-
ber m, according to Eq. (4), and it is the radius at which
the azimuthal current density vanishes for quantum
number m. The radius r is the center of the wave
function P „provided that r is not too close to the
boundary pi or p2.
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Figure 6. Dispersions of the surface Andreev bound states at kz = 0, Esurf(kx, kz = 0), for ℓ = 1 (a) and ℓ = 2 (c). Fermi arcs for ℓ = 1 (b)
and ℓ = 2 (d) which are defined as (kx, kz) satisfying Esurf(kx, kz) = 0. The filled circles in (b) and (c) depict the point nodes.

Without loss of generality, we set the specular surface to be
normal to the ẑ-axis. We also suppose the spatially uniform
isotropic energy gap "∥ = "⊥ ≡ "0. In accordance with
the consequence of the index theorem in section 4.3, then,
the bound state solution with |E(k∥)| ! "0 has the energy
dispersion linear in the momentum k∥ =(kx, ky) as

E0(k∥) = ±"0

kF
|k∥|. (140)

This expression is independent of the orientation of n̂ and
the angle ϕ. The corresponding wavefunctions for the
quasiparticles bound at z=0 are given by

ϕ(+)
0,k∥

(r) = Nkeik∥·r∥f (k⊥, z)U(n̂, ϕ)
(
Φ+ − eiφkΦ−

)
, (141)

where Nk is the normalization constant and U ≡diag(U, U ∗).
The wavefunction ϕ(+)

0,k∥
corresponds to the positive energy

solution of E0(k∥) and ϕ(−)
0,k∥

is the negative branch. The
particle-hole symmetry in equation (27) ensures the one-to-
one correspondence between the two branches of the energy
eigenstates through ϕ(−)

0,k∥
(r)=Cϕ(+)

0,−k∥
(r). In equation (141),

we also set f (k⊥, z)= sin (k⊥z) e−z/ξ with k2
⊥ ≡k2

F − k2
∥ . The

spinors, Φ+ ≡ (1, 0, 0, −i)T and Φ− ≡ (0, i, 1, 0)T, are the
eigenvectors of the spin operator Sz ≡ 1

2 diag(σz, −σ T
z ) in the

Nambu space,

SzΦ± = ±1
2
Φ±. (142)

The quantized field Ψ = (ψ↑, ψ↓, ψ†
↑, ψ†

↓)T in spin-triplet
superfluids can be expanded in terms of the positive energy
states of the surface Andreev bound states with Esurf(k∥)"0
and ϕk∥(r) in addition to continuum states. For low
temperature regimes T ≪ "0, the field operator can be

constructed from the contributions of only the surface Andreev
bound states as

Ψ(r) =
∑

k∥

[
ϕ(+)

0,k∥
(r)ηk∥ + Cϕ(+)

0,k∥
(r)η†

k∥

]
+ (E > "0),

(143)

where ηk∥ and η†
k∥

denote the Bogoliubov quasiparticle

operators obeying the anti-commutation relations, {ηk, η
†
k′} =

δk,k′ and {ηk, ηk′}={η†
k, η

†
k′}=0. Substituting equation (141)

into the expansion form of Ψ, the quantized field operator
contributed from the surface Andreev bound states is recast into
Ψ(r) ≈

∑
k∥

ϕ(+)
0,k∥

(r)[ηk∥ −e−iφk e−2ik∥·r∥η†
k∥

]. This reproduce
the Majorana Ising condition in equation (108)

(
ψ↑(r)

ψ↓(r)

)
= iσµRµz(n̂, ϕ)

(
ψ†

↓(r)

−ψ†
↑(r)

)

. (144)

Hence, the Majorana fields constructed from the surface
Andreev bound states reproduce the Ising spin property and
the surface bound states are not coupled to the local density
operators, as discussed in equations (111) and (112). Using
equation (144), the dynamical spin susceptibility is obtained as

χµν(r1, r2; ω) = χM
zz (r1, r2; ω)Rµz(n̂, ϕ)Rνz(n̂, ϕ). (145)

Therefore, it originates from Majorana Ising spins SM
z (r) and

χ (M)
zz (r1, r2; ω) ≡ ⟨SM

z (r1)S
M
z (r2)⟩ω with the SO(3) rotation

Rµν(n̂, ϕ). The property of χ (M)
zz (r1, r2; ω) was discussed

in [65, 69] and the further details will be discussed in section 9.
We emphasize that, in the absence of a magnetic field,

the whole branch of the surface Andreev bound states can
retain the Ising spin character, contrary to the argument based
on the chiral symmetry. The Majorana nature of the whole
branch is a consequence of the Andreev approximation, and
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argument of the intrinsic angular momentum. The depletion
of the edge mass current at rough edges was indeed
demonstrated in Refs. 191 and 306, which found the
deviation of LzðT ¼ 0Þ from Nħ=2. For nodeless two-
dimensional chiral p-wave superfluids, the angular momen-
tum in the bulk can be obtained as L2Dbulk ¼ Nħ=2 using the
Berry connection,415) whereas the Berry connection is not
well-defined for nodal 3He-A. Therefore, the intrinsic angular
momentum paradox of 3He-A still remains as an unresolved
problem.

In the case of chiral superconductors, the Meissner surface
current flows in a layer within the penetration depth !ðTÞ
which is typically much longer than the superconducting
coherence length, the length scale of chiral edge states. The
contribution of the Meissner current considerably screens the
spontaneous edge current and no net current remains in chiral
superconductors. Tsuruta et al.,420) however, demonstrated
that in multiband chiral superconductors, the contribution
of the Meissner current becomes less important, making it
possible to observe the spontaneous edge current. The
amount of the net current is found to be sensitive to the
orbital channel of chiral Cooper pairs. The total angular
momentum in chiral ‘-wave superconductors (‘ $ 2) is
deviated from Lz ¼ ħN=2, which reflects the existence of ‘
branches of chiral edge Majorana fermions as shown in
Eq. (100).231,233)

6.1.3 Chiral domain wall and spectral flow
3He-A spontaneously breaks TRS as well as the rotational

symmetry in the orbital space, and is thus regarded as the
orbital ferromagnetic state. The l-vector characterizes the
orientation of the rotational symmetry breaking in the orbital
space, and the degeneracy space SO(3) denotes the
degeneracy of the ground states with respect to a orientation
of l̂ as in Eq. (167). Hence, the transition to the A-phase may
be accompanied by multiple domains where each domain has
the different orientation of l̂, i.e., the chiral domain walls.
Ikegami et al.421) observed multiple domain walls as well as
the chirality in a single domain through the mobility of
electron bubbles injected on the surface of the liquid 3He.
The moving electrons on the surface of 3He experience the
intrinsic Magnus force, which is attributed to the skew
scattering of electrons by quasiparticles.

The structure of a chiral domain wall has been investigated
in a 3He-A thin film by many researchers.75,173,422–424)

Nakahara173) first demonstrated that a chiral domain wall
composed of the A-phase with a different l̂ is accompanied by
the zero energy states. Silaev and Volovik75) uncovered the
topological aspect of the chiral domain wall. The topolog-
ically nontrivial quasiparticles bound to the domain wall form
the dispersionless zero energy flat band, i.e., the topological
Fermi arc, which is the manifestation of the Weyl super-
conductivity of 3He-A as discussed in Sect. 4.3. Most
recently, Tsutsumi424) has investigated the mass current
flowing along the domain wall. Owing to the nontrivial
topological structure of the chiral domain wall, the mass
current turns out to flow along the domain wall in the
opposite sense from the Cooper pairs’ angular momentum
[see also Fig. 20(a)].

We here show the structure of a single chiral domain wall
in 3He-A in connection with the macroscopic angular

momentum carried by the bound states.424) The l̂-vector
points to the ẑ-direction in x > 0 and is aligned to be the %ẑ-
direction in x < 0 [see Fig. 20(a)]. The domain wall structure
and quasiparticle spectrum are determined by self-consis-
tently solving the Eilenberger equation coupled to the gap
equation with an appropriate boundary condition.424) The
resultant dispersion on the domain wall (x ¼ 0) with kz ¼ 0 at
T ¼ 0:2Tc is shown in Fig. 20(b). Since the ky-component of
the d-vector parallel to the domain wall changes its sign at
x ¼ 0,423) the branches of the bound state cross the zero
energy at ky ¼ &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F % k2z

p
and form the dispersionless flat

band along kz.
The negative energy branch of the bound states with

ky > 0 is occupied at T ¼ 0 and thus responsible for the
generation of the nonvanishing mass current toward the þŷ-
direction. The net mass current carried by the bound states
and the continuum state is estimated as Jy ( nħ=2. We notice
that the quasiclassical approximation is not appropriate in
the vicinity of jkyj )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F % k2z

p
;173) however, the deviation

between the quasiclassical approximation and the full
quantum mechanical BdG theory is negligible and thus the
quasiclassical theory is reliable for the qualitative under-
standing of the mass current.75,424)

As depicted in Fig. 20(a), the mass current flows along the
domain wall in the opposite sense of Cooper pairs’ angular
momentum. This is interpreted with the knowledge of
spectral flow.425) As in Eq. (264), 3He-A touching a single
hard wall has the mass current bound to the edge, Jy ¼
%nħ=4, whose direction is in the same sense as the Cooper
pairs’ angular momentum. If we suppose that the domain
mass current is composed of the simple summation of edge
mass currents contributed from two domains, the total mass
current is expected to be Jy ¼ %nħ=2. However, when the
momentum across the zero energy in a branch of the bound
state moves, the number of negative energy quasiparticles
carrying the mass current in the branch will change. The
deviation of the actual mass current from the naive expecta-
tion is given by426)

!Jy ¼
n2Dħ
2

X

a

ka
kF

" #2

signðcaÞ; ð270Þ

where ka is the momentum crossing E ¼ 0, ca is the group
velocity of the bound states at ky ¼ ka, and

P
a implies the

sum over all the zero energy states. For the bound state on the
chiral domain wall, the contribution of the zero energy states

Fig. 20. (Color online) (a) Schematic picture of the domain wall and
(b) angle-resolved local density of statesNðk; x ¼ 0; EÞ at the domain wall as
a function of ky for kz ¼ 0. The mass current J flows along the domain wall
(þŷ-direction). Figures adapted from Ref. 424. © 2011 Springer.
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7.1 Topology and symmetry classification of vortices
To take a simple example, first consider an s-wave BCS

superconducting state whose degeneracy space is R ¼ Uð1Þ.
The order parameter residing in the manifold R ¼ Uð1Þ gives
rise to a variety of topologically distinct states. The
superconducting state having a spatially uniform U(1) phase
is known as the Meissner state, while the order parameter is
allowed to have the spatially winding U(1) phase ei!", where
ϕ is the azimuthal angle in the spatial coordinate. The state
with a definite phase winding is called the vortex state, where
the single valuedness of the order parameter requires the
“vorticity” κ to be an integer. The state having nonzero κ
must be accompanied by a singular point at which the U(1)
phase is ill-defined and the order parameter becomes zero.
This is called the vortex core, and κ implies the strength
of the magnetic flux penetrating the vortex core in the
superconductor.

The topological stability of such a line defect in ordered
media is represented by the first homotopy group, #1ðRÞ,
which counts the number of times that a path S1 enclosing the
line defect covers the degeneracy space R. For the case of
R ¼ Uð1Þ, the first homotopy group is isomorphic to the
integer group, #1ðRÞ ¼ Z, which is associated with the
vorticity κ. The higher homotopy groups #2ðRÞ and #3ðRÞ
represent the possibility of the formation of monopole and
skyrmion excitations, respectively.32,101)

Linear defects in the bulk BW state—The bulk BW state is
known as the most symmetric phase and holds the joint
SO(3) symmetry of the spin and orbital spaces as in
Eq. (135). This indicates that the spin–orbit coupling
emerges through the spontaneous symmetry breaking, and
the order parameter possesses the SO(3) degrees of freedom
in addition to the U(1) phase rotation, as in Eq. (136). The
possible linear defects in the bulk BW state are given by the
homotopy group

#1ðRBÞ ¼ #1ðSOð3ÞL$SÞ % #1ðUð1Þ’Þ ¼ Z2 % Z: ð279Þ

The former associated with the SO(3) degrees of freedom
presents the topological stability of the textural structure
formed by R$iðn̂; ’Þ, while the latter #1ðUð1Þ’Þ provides the
possibility of a quantized vortex. We here notice that in real
3He, the magnetic dipole–dipole interaction originating from
the nuclear magnetic moment forces φ to the so-called
Leggett angle ’L ¼ cos$1ð$1=4Þ. This reduces the order
parameter manifold SO(3) to S2 and the first homotopy group
is trivial. Hence, an n̂-texture having a linear defect is
unstable toward the spatially uniform n̂-vector, and only
quantized vortices generated by the U(1) phase rotation can
be topologically stable linear defects in the bulk BW state.

Linear defects in the bulk ABM state—The linear defects
realized in the bulk ABM state are essentially different from
those in the BW state, because in the ABM state, the gauge
symmetry is intrinsically coupled with the rotational
symmetry of the orbital space. This implies that the spatially
inhomogeneous configuration of l̂ generates the superfluid
flow. Hence, the gauge-orbital symmetry peculiar to 3He-A
gives rise to the topological stability of continuous vortices
without a vortex core at which the phase singularity exists.

When the dipole interaction is negligibly weak, the order
parameter of the ABM state is composed of two independent
vectors, l̂ and d̂. As in Eq. (167), the corresponding

degeneracy space has an extra Z2 symmetry that the change
from d̂ to $d̂ can be compensated by the phase rotation
’ ↦ ’ þ #. Owing to #1ðS2Þ ¼ 0 and the Z2 symmetry of the
dipole-free d̂-vector, the topologically stable linear defects in
the bulk ABM state are characterized by the group of the
integers modulo 4,

#1ðRAÞ ¼ #1ðSOð3Þ=Z2Þ ¼ Z4: ð280Þ

This indicates that there exist four different classes of
topologically protected linear defects in the dipole-free case.

As for the dipole-free case, the four possible linear defects
can be categorized by the fractional topological charge

N ¼ 0;
1

2
; 1;

3

2
; ð281Þ

where N ¼ 2 is topologically identical to N ¼ 0. The extra Z2

symmetry in the ABM state allows us sto take the half-
integers of the topological charge, because the π-phase jump
can be canceled out by the change in the orientation of d̂.
The representatives of possible defects are the Anderson–
Toulouse and Mermin–Ho vortices268,269) for N ¼ 0, half-
quantized vortices430) for N ¼ 1=2, and a radial l̂ disgyra-
tion429) without phase winding for N ¼ 1. The topological
state with N ¼ 3=2 is identical to that with N ¼ $1=2. The
representatives of continuous vortices are illustrated in
Fig. 22. In Sect. 7.3, we will discuss the low-lying
quasiparticles bound to the Mermin–Ho vortex with N ¼ 0
and the ground-state texture of rotating 3He-A confined in a
narrow cylinder. The half-quantum vortex state with N ¼ 1=2
is intriguing in the sense that it hosts non-Abelian Majorana
fermions.114) The stability of the half-quantum vortices will
be discussed in Sect. 7.4.

As already mentioned, however, the d̂-vector in the ABM
order parameter is locked to l̂ by the dipole–dipole interaction
originating from the nuclear magnetic moment. In the
situation that the dipolar field is dominant, the Z2 symmetry
vanishes and the degeneracy space is reduced to SOð3ÞL;’.
The topologically stable defect is characterized by
#1ðSOð3ÞÞ ¼ Z2, where only N ¼ 0 and 1 classes are
possible. The vortex structure and low-lying quasiparticles
are shown in Sect. 7.3. In contrast, when the orientation of
the l̂-vector is forced by a restricted geometry, the Z2

symmetry associated with d̂ plays an essential role in
realizing a half-quantum vortex. The thermodynamical
stability and topologically protected Majorana fermions are
discussed in Sect. 7.4.

In the presence of a strong magnetic field, as mentioned in
Eq. (173), the d-vector tends to be confined in the plane

Fig. 22. (Color online) Representatives of continuous vortices and texture
formed by the l̂-texture in rotating 3He-A: Mermin–Ho vortex with N ¼ 0,
mixt-twist vortex with N ¼ $2 ' 0, and radial disgyration with N ¼ 1.
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7.1 Topology and symmetry classification of vortices
To take a simple example, first consider an s-wave BCS

superconducting state whose degeneracy space is R ¼ Uð1Þ.
The order parameter residing in the manifold R ¼ Uð1Þ gives
rise to a variety of topologically distinct states. The
superconducting state having a spatially uniform U(1) phase
is known as the Meissner state, while the order parameter is
allowed to have the spatially winding U(1) phase ei!", where
ϕ is the azimuthal angle in the spatial coordinate. The state
with a definite phase winding is called the vortex state, where
the single valuedness of the order parameter requires the
“vorticity” κ to be an integer. The state having nonzero κ
must be accompanied by a singular point at which the U(1)
phase is ill-defined and the order parameter becomes zero.
This is called the vortex core, and κ implies the strength
of the magnetic flux penetrating the vortex core in the
superconductor.

The topological stability of such a line defect in ordered
media is represented by the first homotopy group, #1ðRÞ,
which counts the number of times that a path S1 enclosing the
line defect covers the degeneracy space R. For the case of
R ¼ Uð1Þ, the first homotopy group is isomorphic to the
integer group, #1ðRÞ ¼ Z, which is associated with the
vorticity κ. The higher homotopy groups #2ðRÞ and #3ðRÞ
represent the possibility of the formation of monopole and
skyrmion excitations, respectively.32,101)

Linear defects in the bulk BW state—The bulk BW state is
known as the most symmetric phase and holds the joint
SO(3) symmetry of the spin and orbital spaces as in
Eq. (135). This indicates that the spin–orbit coupling
emerges through the spontaneous symmetry breaking, and
the order parameter possesses the SO(3) degrees of freedom
in addition to the U(1) phase rotation, as in Eq. (136). The
possible linear defects in the bulk BW state are given by the
homotopy group

#1ðRBÞ ¼ #1ðSOð3ÞL$SÞ % #1ðUð1Þ’Þ ¼ Z2 % Z: ð279Þ

The former associated with the SO(3) degrees of freedom
presents the topological stability of the textural structure
formed by R$iðn̂; ’Þ, while the latter #1ðUð1Þ’Þ provides the
possibility of a quantized vortex. We here notice that in real
3He, the magnetic dipole–dipole interaction originating from
the nuclear magnetic moment forces φ to the so-called
Leggett angle ’L ¼ cos$1ð$1=4Þ. This reduces the order
parameter manifold SO(3) to S2 and the first homotopy group
is trivial. Hence, an n̂-texture having a linear defect is
unstable toward the spatially uniform n̂-vector, and only
quantized vortices generated by the U(1) phase rotation can
be topologically stable linear defects in the bulk BW state.

Linear defects in the bulk ABM state—The linear defects
realized in the bulk ABM state are essentially different from
those in the BW state, because in the ABM state, the gauge
symmetry is intrinsically coupled with the rotational
symmetry of the orbital space. This implies that the spatially
inhomogeneous configuration of l̂ generates the superfluid
flow. Hence, the gauge-orbital symmetry peculiar to 3He-A
gives rise to the topological stability of continuous vortices
without a vortex core at which the phase singularity exists.

When the dipole interaction is negligibly weak, the order
parameter of the ABM state is composed of two independent
vectors, l̂ and d̂. As in Eq. (167), the corresponding

degeneracy space has an extra Z2 symmetry that the change
from d̂ to $d̂ can be compensated by the phase rotation
’ ↦ ’ þ #. Owing to #1ðS2Þ ¼ 0 and the Z2 symmetry of the
dipole-free d̂-vector, the topologically stable linear defects in
the bulk ABM state are characterized by the group of the
integers modulo 4,

#1ðRAÞ ¼ #1ðSOð3Þ=Z2Þ ¼ Z4: ð280Þ

This indicates that there exist four different classes of
topologically protected linear defects in the dipole-free case.

As for the dipole-free case, the four possible linear defects
can be categorized by the fractional topological charge

N ¼ 0;
1

2
; 1;

3

2
; ð281Þ

where N ¼ 2 is topologically identical to N ¼ 0. The extra Z2

symmetry in the ABM state allows us sto take the half-
integers of the topological charge, because the π-phase jump
can be canceled out by the change in the orientation of d̂.
The representatives of possible defects are the Anderson–
Toulouse and Mermin–Ho vortices268,269) for N ¼ 0, half-
quantized vortices430) for N ¼ 1=2, and a radial l̂ disgyra-
tion429) without phase winding for N ¼ 1. The topological
state with N ¼ 3=2 is identical to that with N ¼ $1=2. The
representatives of continuous vortices are illustrated in
Fig. 22. In Sect. 7.3, we will discuss the low-lying
quasiparticles bound to the Mermin–Ho vortex with N ¼ 0
and the ground-state texture of rotating 3He-A confined in a
narrow cylinder. The half-quantum vortex state with N ¼ 1=2
is intriguing in the sense that it hosts non-Abelian Majorana
fermions.114) The stability of the half-quantum vortices will
be discussed in Sect. 7.4.

As already mentioned, however, the d̂-vector in the ABM
order parameter is locked to l̂ by the dipole–dipole interaction
originating from the nuclear magnetic moment. In the
situation that the dipolar field is dominant, the Z2 symmetry
vanishes and the degeneracy space is reduced to SOð3ÞL;’.
The topologically stable defect is characterized by
#1ðSOð3ÞÞ ¼ Z2, where only N ¼ 0 and 1 classes are
possible. The vortex structure and low-lying quasiparticles
are shown in Sect. 7.3. In contrast, when the orientation of
the l̂-vector is forced by a restricted geometry, the Z2

symmetry associated with d̂ plays an essential role in
realizing a half-quantum vortex. The thermodynamical
stability and topologically protected Majorana fermions are
discussed in Sect. 7.4.

In the presence of a strong magnetic field, as mentioned in
Eq. (173), the d-vector tends to be confined in the plane

Fig. 22. (Color online) Representatives of continuous vortices and texture
formed by the l̂-texture in rotating 3He-A: Mermin–Ho vortex with N ¼ 0,
mixt-twist vortex with N ¼ $2 ' 0, and radial disgyration with N ¼ 1.
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Fig. 1. (color online) Phase diagram of the superfluid 3He confined in a slab geometry under a magnetic field parallel to the surface (center), where the
temperature is set to be T = 0.4Tc0 and D and H are the thickness of the slab and the magnitude of an applied field, respectively. The thin (thick) curves is the
first (second) order transition line.

tum liquid down to zero temperatures and the normal state
maintains huge continuous rotation symmetries in spin and
coordinate spaces, independently. (ii) The bulk superfluidity
of 3He has been well established as spin-triplet odd-parity
pairing.31, 32 The A phase that appears in the high temperature
and pressure region is identified as the chiral p-wave pairing
with spontaneously broken time-reversal symmetry,33, 34 and
the B phase is known as a fully gapped pairing with time-
reversal symmetry35 (see Figs. 1 and 9). The superfluid 3He
having huge order parameter manifolds has fascinated many
physicists not only as a prototype of unconventional super-
conductors but also as a treasure box of topology of order
parameter manifolds, such as textures, Nambu-Goldstone and
Higgs modes, and topological excitations.16, 32, 36–38 (iii) Re-
cent development on nanofabrication techniques enables one
to confine the quantum liquid to a variety of geometries, such
as a single slab and narrow cylinders with a thickness/radius
comparable to the superfluid coherence length.39–45 In these
geometries, the planar, polar, and crystalline ordered phases
become energetically competitive to the A and B phases.46–50

(iv) The surface density of states peculiar to gapless quasi-
particle states was already observed in specific heat measure-
ments and high precision spectroscopy based on transverse
acoustics with well controlled surface conditions.51–57

Motivated by puzzling issues on the intrinsic angular mo-
mentum paradox, the investigations on the nontrivial momen-
tum space topology were first initiated in 3He by Stone et
al.58, 59 and Volovik,60, 61 independently. In connection with an
analogue of a two-dimensional 3He-A thin film to the quan-
tum Hall effect and gauge theories, Volovik60, 62–64 futher un-
covered the remarkable fact that the pairwise point nodes on
the Fermi surface are protected by the first Chern number as a
“magnetic” monopole, and low-energy quasiparticles near the
Fermi points behave as chiral Weyl fermions. The superfluid
3He-A thin film is now widely recognized as a prototype of

Weyl superconductors,16, 65–70 which is accompanied by zero
energy flatband terminated to pairwise Weyl points.71–75

As mentioned above, recent development on topological
classifications clarified the distinct topological structures be-
tween the A and B phases; The 3He-A thin film is a Weyl su-
perconductor characterized by the first Chern number, while
the bulk B phase possesses topological superfluidity pro-
tected by the time-reversal symmetry.8, 12–15 Furthermore, it
has been proposed that the marriage of the superfluid 3He
with nanofabrication techniques gives rise to a diversity of
topological phenomena intertwined with symmetry.49, 75, 76

As displayed in Fig. 1, for instance, a confined 3He un-
der a magnetic field has nontrivial phase diagram composed
of a variety of topological and nontopological phases: The
symmetry-protected topological phase BI, symmetry-broken
non-topological phase BII, Wely superfluid A phase, the pla-
nar phase, and crystalline ordered “stripe” phase. The critical
field H∗ in Fig. 1 is identified as the topological phase transi-
tion concomitant with spontaneous symmetry breaking24 and
is accompanied by noteworthy topological quantum critical
phenomena, such as emergent supersymmetry.77 Contrary to
the A phase, the pairwise point nodes in the planar phase are
protected by a mirror reflection symmetry and the zero energy
flatband emergent in the surface exhibits anisotropic magnetic
responses.27, 76, 78 It is also interesting to note that apart from
the topological aspect of 3He, there have been a long history
of investigations on gapless quasiparticles in the direction of
Andreev bound states.79, 80 Nowadays Majorana fermions are
identified as a special kind of surface Andreev bound states in
the context of topological superconductors nowadays.5

This article gives a comprehensive review of recent
progress on symmetry protected topological superfluids and
topological crystalline superconductors with a special focus
on 3He. In Sec. 2, we start with the minimal model that cap-
tures an essence of the topological aspect of superfluids and
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Fig. 1. (color online) Phase diagram of the superfluid 3He confined in a slab geometry under a magnetic field parallel to the surface (center), where the
temperature is set to be T = 0.4Tc0 and D and H are the thickness of the slab and the magnitude of an applied field, respectively. The thin (thick) curves is the
first (second) order transition line.

tum liquid down to zero temperatures and the normal state
maintains huge continuous rotation symmetries in spin and
coordinate spaces, independently. (ii) The bulk superfluidity
of 3He has been well established as spin-triplet odd-parity
pairing.31, 32 The A phase that appears in the high temperature
and pressure region is identified as the chiral p-wave pairing
with spontaneously broken time-reversal symmetry,33, 34 and
the B phase is known as a fully gapped pairing with time-
reversal symmetry35 (see Figs. 1 and 9). The superfluid 3He
having huge order parameter manifolds has fascinated many
physicists not only as a prototype of unconventional super-
conductors but also as a treasure box of topology of order
parameter manifolds, such as textures, Nambu-Goldstone and
Higgs modes, and topological excitations.16, 32, 36–38 (iii) Re-
cent development on nanofabrication techniques enables one
to confine the quantum liquid to a variety of geometries, such
as a single slab and narrow cylinders with a thickness/radius
comparable to the superfluid coherence length.39–45 In these
geometries, the planar, polar, and crystalline ordered phases
become energetically competitive to the A and B phases.46–50

(iv) The surface density of states peculiar to gapless quasi-
particle states was already observed in specific heat measure-
ments and high precision spectroscopy based on transverse
acoustics with well controlled surface conditions.51–57

Motivated by puzzling issues on the intrinsic angular mo-
mentum paradox, the investigations on the nontrivial momen-
tum space topology were first initiated in 3He by Stone et
al.58, 59 and Volovik,60, 61 independently. In connection with an
analogue of a two-dimensional 3He-A thin film to the quan-
tum Hall effect and gauge theories, Volovik60, 62–64 futher un-
covered the remarkable fact that the pairwise point nodes on
the Fermi surface are protected by the first Chern number as a
“magnetic” monopole, and low-energy quasiparticles near the
Fermi points behave as chiral Weyl fermions. The superfluid
3He-A thin film is now widely recognized as a prototype of

Weyl superconductors,16, 65–70 which is accompanied by zero
energy flatband terminated to pairwise Weyl points.71–75

As mentioned above, recent development on topological
classifications clarified the distinct topological structures be-
tween the A and B phases; The 3He-A thin film is a Weyl su-
perconductor characterized by the first Chern number, while
the bulk B phase possesses topological superfluidity pro-
tected by the time-reversal symmetry.8, 12–15 Furthermore, it
has been proposed that the marriage of the superfluid 3He
with nanofabrication techniques gives rise to a diversity of
topological phenomena intertwined with symmetry.49, 75, 76

As displayed in Fig. 1, for instance, a confined 3He un-
der a magnetic field has nontrivial phase diagram composed
of a variety of topological and nontopological phases: The
symmetry-protected topological phase BI, symmetry-broken
non-topological phase BII, Wely superfluid A phase, the pla-
nar phase, and crystalline ordered “stripe” phase. The critical
field H∗ in Fig. 1 is identified as the topological phase transi-
tion concomitant with spontaneous symmetry breaking24 and
is accompanied by noteworthy topological quantum critical
phenomena, such as emergent supersymmetry.77 Contrary to
the A phase, the pairwise point nodes in the planar phase are
protected by a mirror reflection symmetry and the zero energy
flatband emergent in the surface exhibits anisotropic magnetic
responses.27, 76, 78 It is also interesting to note that apart from
the topological aspect of 3He, there have been a long history
of investigations on gapless quasiparticles in the direction of
Andreev bound states.79, 80 Nowadays Majorana fermions are
identified as a special kind of surface Andreev bound states in
the context of topological superconductors nowadays.5

This article gives a comprehensive review of recent
progress on symmetry protected topological superfluids and
topological crystalline superconductors with a special focus
on 3He. In Sec. 2, we start with the minimal model that cap-
tures an essence of the topological aspect of superfluids and
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FIG. 6. Dependence op angle of incidence of the position of the bound state, coo(8), and its ~eight, NT(~o, g)/jV(0), for

are displayed in Fig. 5. Incidence at angles between
zero (normal) and = 1.3 rad yields two particularly
conspicuous features. First is the presence of a single
bound-state 5 function peak of significant weight at
energies cus less than Ab„ik( T). And second, the gen-
tle curve for ~ & 5 betrays no square-root singularity
that would be typical of the s-wave case. This curve
overshoots the bulk value in its climb and then re-
laxes to it over an energy width of a few 4.
The energy of the bound state increases with angle

until at a value 8 =1.3 rad the spike merges with the
curve above and fades away. For angles nearing this
merging value (ever more grazing) one observes, as
well, that the "overshoot" mentioned above is
developing into a real peak at an energy above
=1.14. This peak ~ould be the analog of that
observed in s-wave pairing though no singular
behavior is observed here. Figure 6 details the posi-
tion of the bound-state peak and its ~eight. The

strong angular dependence manifested here is a direct
consequence of the anisotropic nature of the gap on
the surface. At non-normal incidence the perpendic-
ular component of 6 is "perceived" more strongly
than the parallel ones. Since Ai has been greatly di-
minished excitations are possible at energies below h.
Kith increasing angle the parallel components play an
ever more important role. Near parallel incidence
they are dominant, as evidenced by the appearance of
an s-wave-like peak and its position above hb [k (ln
response to the enhancement of hei on the wall). The
model calculations substantiate this picture in detail.
An actual experiment would presumably measure

n (k, cu) folded against some other quantity. Were
the experiment especially sensitive to particles collid-
ing at near-normal incidence, where the discrepancy
with s-wave pairing is particularly apparent, one
might hope that p-wave pairing could be clearly
marked.
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Figure 5.2: The angle-resolved local DOS for the 3He-B near a specular surface. The

spectrum is calculated for T = 0.5T

c

. For clarity we have broadened the Andreev bound

states with a width parameter, ¥ = 10°3¢0.

where gR(p̂,R; ") is found by solving the quasiclassical transport equation for real

energies; i.e. i"
m

! " + i¥, ¥ ! 0+, with the known order parameter and molecular

fields.

The local density of states for the B-phase near a wall shows quasiparticle

states which develop below the bulk gap, and which are bound to the surface, i.e.

their spectral weight vanishes a few coherence lengths away from the surface. For

example, the angle-resolved spectrum of superfluid 3He-B near a specular surface,

calculated numerically for a self-consistently determined order parameter, is shown

in Fig. 5.2. For the specular reflection the position of the positive energy surface

bound state depends on the angle of the incident trajectory, µ, approximately as

" b = ¢k sin µ. For normal incidence the bound state is at zero energy and disperses

towards the continuum edge as the incident trajectory approaches grazing incidence.

There is also some dispersion in the continuum edge reflecting the enhancement of
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¢k by surface scattering.

DiÆuse scattering at an atomically rough surface couples an incident trajectory

to all outgoing trajectories. This leads to mixing of states with otherwise diÆerent

energies, and thus to a band of sub-gap states for a given incident trajectory as

shown in Fig. 5.3. The suppression of ¢k for diÆuse scattering also leads to the

formation of additional subgap states bound by multiple Andreev reflection within

the “pair potential” provided by the suppressed order parameter, ¢k(z). These states

appear only near grazing incidence and are weakly bound with energies just below

the continuum edge.

Sub-gap states do not appear in 3He-A at a specular wall since there is no

change in phase of the order parameter for specular reflection when ` k ẑ. Thus,

all quasiparticle states belong to the continuum for specular scattering. This situ-

ation changes dramatically for a rough surface. Now there are scattering processes

S=0:	  diffusive	  limitS=1:	  specular	  limit

Vorontsov	  and	  Sauls,	  PRB	  68,	  064508	  (2003)

Formation of Andreev bound states

Sub-‐gap	  structure:	  anomalous	  scaLering	  of	  MF	  in	  
the	  presence	  of	  disorder	  (Nagato	  et	  al.	  JPSJ	  (11))
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Figure 1. Schematic picture of the surface Andreev bound states of
a p-wave superfluid formed near the wall. A px type wavefunction is
drawn on the left as an example. s is the trajectory of the
quasi-particle.

2.2. Surface Andreev bound states

The physics of a surface Andreev bound state is initiated for
superconductors in the interface between the superconductor
and the insulator or normal metal. The unique quasi-particle
quantum states in which Andreev reflection [11] plays an
important role are well studied. The states are called surface
Andreev bound states. Though the study was initially on
conventional superconductors, the physics of unconventional
superconductors is more interesting since the finding of
superfluid 3He and identification of p-wave superfluids. Study
of the surface bound states of p-wave superconductors will
open up a completely new area of physics.

The surface Andreev bound states of p-wave supercon-
ductors were first investigated theoretically by Buchholtz
and Zwicknagl [12] in a tunnel junction to identify the
p-wave symmetry. They calculated the density of states
of the surface states for the specular surface, finding that
there must be some mid-gap states below the bulk gap
energy, which are quite different from that of the s-wave
superconductor. They concluded that a tunnel junction
experiment would be able to identify the symmetry of the
superconductor’s order parameter. There have been quite a
few successful tunnel spectroscopy experiments on d-wave
superconductors [13–15]; however, for the p-wave supercon-
ductors or other possible topological superconductors, such
as Sr2RuO4 [16–19], UPt3 [20, 21] and CuxBi2Se3 [22],
fewer experiments have been reported. The broad hump in the
conductance spectrum recently observed in Sr2RuO4 should
be an indication of chiral p-wave superconductivity [18].

For the superfluid 3He B phase, Zhang et al were the first
to try to calculate the order parameter near the surface [23].
They utilized a thin dirty layer model to simulate the actual
surfaces, the diffusive scattering wall, and with this model
obtained almost the same spatial variation of the order
parameter as in figure 2.

Zhang subsequently determined the angle averaged
density of states of the surface states of the superfluid 3He B
phase for the diffusive case [24]. He used the same thin dirty
layer model and obtained a very similar graph to the one for
the S = 0 case in figure 3. He noticed the apparent small gap
near the bulk energy gap in the rough case and attributed this
to the suppression of the parallel order parameter, since the
maximum energy of the bound states is always smaller than
the amplitude of the order parameter.

Figure 2. Spatial variation of the order parameters in the vicinity of
a wall. The order parameter splits into two components, parallel and
perpendicular. z is the distance from the wall and ⇠ is the coherence
length. W is the parameter related to the specularity; W = 1
indicates the diffusive limit (S = 0) and W = 0 the specular limit
(S = 1). Reprinted with permission from [30]. Copyright 1998 The
Physical Society of Japan.

Figure 3. The angle averaged surface density of states of superfluid
3He-B at various specularity parameters S. Reprinted with
permission from [8]. Copyright 2009 The American Physical
Society.

One should note that the mid-gap state is not a bound
state confined in a well of the pair potential which appears
at energies higher than zero, as in the case discussed by de
Gennes and Saint James. Indeed, as Hu showed, it is found
to be formed even in the case of a spatially constant order
parameter [25]. Motivated by the work of Hu, Ohashi and
Takada developed a general theory with which to investigate
what important factor is required to form the mid-gap state
in unconventional superconductors [26]. They concluded that
the mid-gap state is always located at the point at which
the sign of the order parameter recognized by quasi-particles
changes [13, 26]. A schematic picture is shown in figure 1.
A new interpretation of the surface bound state of a p-wave
superfluid as an odd-frequency spin triplet s-wave pair
component was proposed in 2012 by Higashitani et al [27].

Roughness of the wall at the atomic scale is a necessary
condition to induce the transverse motion of liquid or for the
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Figure 12. Temperature dependence of the transverse acoustic
impedance of the real part in normal fluid. Reprinted with
permission from [7]. Copyright 2008 The American Physical
Society.

Figure 13. Real and imaginary part of the transverse acoustic
impedance in the case of S = 0.17 (solid symbols). 2.7 layers of
4He are added. The pressure is 10 bar. Open symbols are the result
without 4He. Frequencies are 28.7 and 47.8 MHz. The vertical lines
indicate T⇤.

also well represented by the theory [77], though the result is
not presented.

From the measurements of T⇤ at various frequencies,
pressures and 4He coatings, the S dependence of 1⇤ was
determined experimentally [6, 7]. A data set compiled
for 1⇤/1 is given in figure 14 as a function of T/Tc.
Two lines represent the theoretical calculation. As expected
theoretically, 1⇤/1 is smallest at S = 0 and becomes larger at
higher S. The observation of 1⇤/1 ⇡ 1 at sufficiently high S
means that the SDOS becomes gapless due to the broadening
of the bound state band as theory predicted. 1⇤/1 decreases

Figure 14. 1⇤(T/Tc)/1(T/Tc) as a function of T/Tc for various
Ss. Reprinted with permission from [7]. Copyright 2008 The
American Physical Society.

slightly with warming, but experimental results seem to show
a larger temperature dependence than the theory near Tc.
However, the scatter is rather large in the high temperature
region due to the steep growth of 1(T) there, thus it is not yet
certain whether the temperature dependence is really larger.
1⇤/1 is significantly smaller than the theoretical value at
S = 0 and the reason for this is not yet clear. The Fermi liquid
correction is not included in the present theory and may be the
reason for the disagreement.

6.3. Towards the specular limit (0.5 < S < 1)

If we increase S further to over 0.5 we find another interesting
phenomenon. A new structure in the impedance is clearly
found at the lower temperatures for S = 0.78. In figure 15,
Z scaled by the normal state value above Tc is plotted as
a function of the scaled energy h̄!/1(T) for S = 0, 0.17
and 0.78 [8, 9]. Higher (lower) energy corresponds to higher
(lower) temperature and so this plot exhibits essentially the
same information as the temperature dependence. In this
way, however, we show the new structure more clearly. The
downward arrow represents the singularity at 1 + 1⇤ as
already explained. A new low energy peak indicated by the
upward arrow appears very clearly at S = 0.78, is barely seen
at S = 0.17, but does not exist at S = 0. This peak appears at
a much lower energy than 21 and must be a reflection of the
modification of the low energy spectra of the surface Andreev
bound states. In figure 16, a theoretical calculation of Z as
a function of acoustic energy is presented. The theory well
reproduces the characteristics of the experiment.

Nagato and his colleagues successfully separated the two
contributions to the impedance: pair excitation and inelastic
scattering of the thermally occupied quasi-particles [8, 77].
As seen in figure 17, the low energy peak is caused by
the inelastic scattering of quasi-particles thermally occupying
surface bound states; this is in contrast to the higher energy
singularity at 1 + 1⇤ which is caused by the pair excitations.
In figure 17, it can also be recognized that the low energy peak
begins to grow at an energy 1 � 1⇤ and ends up around 1.

Let us explain intuitively the formation of the low energy
peak, referring to the theoretically calculated SDOS at 0.9Tc
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the	  presence	  of	  disorder	  (Nagato	  et	  al.)

Detecting Surface States
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case and to two "half-Hamil-
tonian" (spin-up part and spin-
down part) for the triplet case. 
They showed various interest-
Ing properties derived from 
anisotropic energy gap. How-
ever, Balian and W erthamer14

) 

noticed the overlooking of Sz = 0 
component in Anderson and 
Morel's treatment of the sp 
pairing and showed the exist-
ence of an isotropic gap of the 
3P0 type with a lower energy. 
Also Gor'kov and Galitski?5a) 

discussed a possibility of the 

phase shifts in degrees 

400 500 600 (MeV) 
£!lobi 

N-N 
.t. HAMMA-HOSHIZAKI 

-- t• LIVERMORE group 

isotropic gap, although their _30o 

treatment seems to be subject 
to inconsistency.15

b) In these 
works, only the pairing inter-
action of central forces was 
considered. Pairing interac-
tions with tensor and spin-orbit 
forces have never been inves-
tigated, and will provide a 

£F(MeV) 
25 . 50 . 75 0 

8 10 12 

Fig. 1. Nucleon-nucleon scattering phase shifts versus 
EN-N<LAB> =4EF- Solid (dotted) lines represent the 
phase shHts calculated from the OPEG potential with 
2 GeV soft core (the OPEH potential with the hard 
core radius=0.42fm).9> For the 3P2 phase shifts, 

subject of the present paper. solutions of the phase shift analysis are shown.lO> 
For the triplet case, when strong spin-orbit forces are acting, a resulting 

pairing is essentially dictated by the most attractive partial wave. In this physical 
situation, theories of the triplet pairing developed so far only for central forces 
are not applicable to the neutron star matter without revision. In this paper, 
we develope a formulation in the partial wave representation which is applicable 
to the cases with strong spin-orbit forces, as a natural extension of the Bogoliubov 
transformation to the nonzero angular momentum pairing (§ 3). It is shown that 
a special solution with the maximum z-component (mj = ± 2) of the 3P 2 gap equa-
tion in the presence of negative spin-orbit forces corresponds to the equal spin 
pairing given by Anderson and Morel, and the solution of the 3P0 pairing cor-
responds to the isotropic solution obtained by Balian and W erthamer. Applica-
tions to several cases are discussed in § 4. 

Applying this formulation to the 3P2 pairing at high density of the neutron 
star matter, we have obtained an anisotropic energy gap larger than 1 MeV. 
A numerical estimate of the gap has been done by use of Mongan's nonlocal 
separable potentiaP6

) adjusted to nucleon-nucleon scattering. The maximum gap 
is even larger than 3 MeV but the energy gap is very sensitive to the effective 
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repulsive	  core	  +	  aLrac]ve	  LS	  force 3P2	  (spin-‐triplet	  J=2)	  pairing

Superfluidity in Neutron Star Interiors
Tamagaki,	  PTP	  44,	  905	  (1970)

✓CAS-‐A:	  3P2	  may	  explain	  the	  rapid	  cooling	  (Page	  et	  al.	  (2011))	  	  
✓Magnetars:	  exo]c	  pairing	  under	  high	  magne]c	  field	  ~	  1015G	  
✓Proton	  superconductors:	  Type-‐I	  or	  II	  (e.g.,	  Link	  (2003))?
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Sauls	  and	  Serene,	  PRD	  17,	  1524	  (1978)	  

spin momentum

Aµi
J = 2 Aµi = Aiµ

Tr[A] = 0

Ferromagne?c	  phase

Cyclic	  phase

Nema?c	  phase

orbital	  ferro.	  &	  spin	  ferro.	  
=	  3He-‐A1

Non-‐unitary	  state	  (α-‐state)

3P2 Superfluid Phase Diagram

Aµi =

0

@
1

r
�1� r

1

A



Berry	  curvature	  in	  k-‐space

monopole

an?-‐monopole

q = +1

q = �1

C2

!C3

d(k) = �(âk̂a + !b̂k̂b + !2ĉk̂c)

!3 = 1

TM,	  K.	  Masuda,	  M.	  NiLa,	  arXiv:1607.07266

H(k) = êµa⌧
a(kµ � qk↵,µ)

monopole	  charge
nodal	  posi]on

Par]cle-‐hole	  symmetric	  quartet	  of	  Weyl	  fermions

Weyl fermions in Cyclic States

Anomalous	  transport	  due	  to	  chiral	  anomaly(?)



Non-‐Abelian	  frac?onal	  vor?ces:	  Non-‐comm.	  topological	  charge

Kobayashi,	  Kawaguchi,	  NiLa,	  Ueda,	  PRL	  103,	  115301	  (2009)	  
Kawaguchi	  and	  Ueda,	  Phys.	  Rep.	  520,	  253	  (2012)
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operation includes not only a rotation in spin space but also
a gauge transformation. These 12 transformations form the
non-Abelian tetrahedral group T.

Topological charges of vortices can be classified by 12
elements of the non-Abelian group T. We represent these
topological charges as 1, Ix, Iy, . . .. Vortices are also
classified into four conjugacy classes: (I) integer vortex;
1, (II) 1=2-spin vortex; Ix, Iy, and Iz, (III) 1=3 vortex; !C,
Ix !C, Iy !C, and Iz !C, and (IV) 2=3 vortex; !C2, Ix !C

2, Iy !C
2, and

Iz !C
2. Topological charges in the same conjugacy class

transform into one another under the global gauge trans-
formation and the spin rotation. The order parameters for
straight vortices along the z axis in each conjugacy class
can be written in cylindrical coordinates (r; ’; z) as

" ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ntotðrÞ

q
ein1’Ŝ

$

8
>>>><
>>>>:

ðife2iðn2þ1Þ’; 0;
ffiffiffi
2

p
h; 0; ife&2iðn2þ1Þ’ÞT

ðifeið2n2þ1Þ’; 0;
ffiffiffi
2

p
h; 0; ife&ið2n2þ1Þ’ÞT

2ffiffi
3

p ðfeið2n2þ1Þ’; 0; 0;
ffiffiffi
2

p
ge&in2’; 0ÞT

2ffiffi
3

p ðfeið2n2&1Þ’; 0; 0;
ffiffiffi
2

p
ge&in2’; 0ÞT

(2)

for (I), (II), (III), and (IV), respectively, where the vortex is
placed at r ¼ 0. Here, n1 and n2 are the integer winding
numbers, f ¼ fðrÞ, g ¼ gðrÞ, and h ¼ hðrÞ are real func-
tions that satisfy ½fðrÞ2 þ hðrÞ2(=2 ¼ ½fðrÞ2 þ
2gðrÞ2(=3 ¼ 1 and fðr ! 1Þ ¼ gðr ! 1Þ ¼ hðr !
1Þ ¼ 1; Ŝ represents the arbitrary global gauge transfor-
mation and global spin rotation. At the vortex core, the

cyclic order parameter changes to that of a different phase.
With the minimum windings (n1 ¼ n2 ¼ 0), we obtain the
core structure of each conjugacy class by taking fðr ¼
0Þ ¼ 0 as (I)(II) " / Ŝð0; 0; 1; 0; 0ÞT and (III)(IV) " /
Ŝð0; 0; 0; 1; 0ÞT ; i.e., the core of (I) and (II) vortices have
a finite spin-singlet pair amplitude (A00 ! 0), and that of
(III) and (IV) vortices have a finite magnetization (F ! 0)
[24].
When there is more than one vortex in the system, each

topological charge cannot independently transform into
one another under the global gauge transformation and
the global spin rotation. Therefore, the relative relationship
of their topological charges (commutative or noncommu-
tative, in particular) becomes important and their collision
dynamics becomes nontrivial. To investigate the detailed
dynamics of vortex collisions, we numerically solve the
nonlinear Schrödinger equation [18,19] derived from
Eq. (1) in a uniform box subject to the Neumann boundary
condition, starting from the two types of initial conditions
as shown in Fig. 2: (I) two straight vortices at an oblique
angle [Figs. 2(a) and 2(d)] and (II) two linked vortices
[Fig. 2(g)]. We take c1 ¼ c2 ¼ 0:5c0, for which the cyclic
phase and non-Abelian vortices discussed above can exist
stably. In the present simulation, we perform the collision
of vortices with F ! 0 cores and topological charges
shown in Figs. 2(a), 2(d), and 2(g). After the collision,
two vortices get connected and a rung appears between the
two vortices. Depending on the initial topological charges
of the vortices, we obtain rungs withF ! 0 core [Fig. 2(c)]
or A00 ! 0 core [Figs. 2(f) and 2(i)]. For the collisions of
straight vortices, topological charges of rungs in Figs. 2(c)
and 2(f) obey the algebras shown in Fig. 1(g), namely,
!CðIx !C2Þ&1 ¼ Iz !C

2 and !CðIy !CÞ&1 ¼ Iy, respectively. We
have performed numerical simulations with various com-
binations of topological charges, relative velocities, and
collision angles, and confirmed that passing through and
reconnection occur only when the topological charges of
the two vortices are commutative, and that the formation of
a rung always occurs, when the topological charges of the
two vortices are noncommutative. For the linked vortices
shown in Fig. 2(g), we can expect the formation of a rung
as shown in Fig. 1(h). The formed rung in Fig. 2(i) satisfies
expected algebra: Iy !C !CðIy !CÞ&1ð !CÞ&1 ¼ Ix. We also have
checked that unraveling of two linked vortices never hap-
pens for noncommutative topological charges.
We finally describe a possible experimental manifesta-

tion of rungs. The phase-contrast imaging experiment [25]
enables the measurement of local magnetization, and vor-
tices with F ! 0 cores appear as localized magnetization
lines. For example, rungs with F ! 0 cores like Fig. 2(c)
manifest themselves as bridged structures of localized
magnetization.
In conclusion, we have algebraically studied the colli-

sion dynamics of non-Abelian vortices. After the collision,
two non-Abelian vortices with noncommutative topologi-

FIG. 2 (color). Collision dynamics of two non-Abelian vorti-
ces [27]. (a)–(c) Formation of an F ! 0 rung from two straight
vortices. (d)–(f) Formation of an A00 ! 0 rung from two straight
vortices. (g)–(i) Formation of an A00 ! 0 rung from two linked
vortices. In all the figures, the isosurfaces of magnetization jFj2
and the singlet-pair amplitude jA00j2 are shown for vortex cores
with jFj2 ! 0 and jA00j2 ! 0, respectively [see Eq. (2) and the
following sentences]. The topological charge of each vortex is
also indicated.

PRL 103, 115301 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

11 SEPTEMBER 2009

115301-3

Non-‐Abelian	  anyons	  in	  Non-‐Abelian	  vortex?

Symmetric	  traceless	  tensor:	  5-‐component

⇒	  spin-‐2	  BEC	  (e.g.,	  87Rb	  atoms)

Collision	  dynamics
M.	  Kobayashi,	  et	  al.,	  PRL	  (09)

The order parameter is given by ψcyclic =
√

n/2(1, 0, i
√

2, 0, 1)T , which possesses tetrahedral
symmetry, as shown in the inset of Fig. 3. In the many-body ground state of the cyclic state, three
bosons form a spin-singlet trimer and the boson trimers undergo Bose-Einstein condensation, as
shown in Sec. 8.

c2n

c1n

cyclic
ferromagnetic

biaxial nematic

uniaxial
nematic

c 2
n
=
20
c 1
n

Figure 3: Phase diagram of the spin-2 BEC at zero magnetic field. In each phase, the profile of the order parameter
Ψ(ŝ) =

∑
m ψmYm

2 (ŝ) is shown.

The time-dependent GPEs for the spin-2 case can be obtained by substituting Eq. (75) in
Eq. (51):

i!∂ψ±2

∂t
=

[
−!2∇2

2M
+ U(r) ∓ 2p + 4q + c0n ± 2c1Fz − µ

]
ψ±2

+ c1F∓ψ±1 +
c2√

5
Aψ∗∓2, (78)

i!∂ψ±1

∂t
=

[
−!2∇2

2M
+ U(r) ∓ p + q + c0n ± c1Fz − µ

]
ψ±1

+ c1

⎛
⎜⎜⎜⎜⎝
√

6
2

F∓ψ0 + F±ψ±2

⎞
⎟⎟⎟⎟⎠ −

c2√
5

Aψ∗∓1, (79)

i!∂ψ0

∂t
=

[
−!2∇2

2M
+ U(r) + c0n − µ

]
ψ0 +

√
6

2
c1 (F+ψ1 + F−ψ−1) +

c2√
5

Aψ∗0, (80)
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Topological Defects in 3P2 Superfluids
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FIG. 1: (Color online) (a) GL Phase diagram. (b) Gap and
topological structures of nematic phases. The thick arrows
represent the d-vectors and the inner (red-colored) sphere de-
notes the Fermi sphere. (c) Phase diagram under a magnetic
field, obtained from the superfluid Fermi liquid theory. The
UN phase is stabilized at H = 0 for T < Tc0. The thick
(thin) curve is the first (second) order phase boundary. (d)
C(T )/CN(T ) under fixed magnetic fields.

where c†(k) = [c†↑(k), c
†
↓(k), c↑(−k), c↓(−k)] denotes the

creation and annihilation operators of neutrons in the
Nambu space. Here, ε(k) is composed of the 2× 2
single-particle energy subject to the simultaneous rota-
tion of spin and orbital spaces, SO(3)J , and the Zeeman
field −γ!H · σ/2. Spin-triplet pairs are generally repre-
sented by d(k) and 3P2 order parameter is given by the
second-rank, traceless and symmetric tensor, dµi, where

dµ(k) = dµik̂i and k̂= k/kF. The repeated indices im-
ply the sum over (1, 2, 3) or (x, y, z). The quasiparticle
excitation energy at zero fields is given by diagonalizing
Eq. (1) as E±(k) =

√

ε20(k) + |d(k)|2 ± |d(k)× d∗(k)|,
where ε0(k) = 1

2 trε(k). The Hamiltonian holds the
particle-hole symmetry (PHS), CH(k)C−1 = −H(−k),
with C = τ1K, where K is the complex conjugation op-
erator. In addition, the TRS, T H(k)T −1 = H(−k) with
T = iσ2K, is preserved when dµi∈R and H = 0.
The ground state is determined by minimizing the

Ginzburg-Landau (GL) energy functional F , which is in-
variant under SO(3)J and a gauge transformation, U(1)ϕ.
The functional is given as F = αtr[dd∗] + β1|trd2|2 +
β2[tr(dd∗)]2 + β3tr[d2d∗2] [39]. Depending on βi, there
are several phases as in Fig. 1(a). The ground state at
the weak coupling limit is the nematic phase which is
represented by [37, 39, 55]

dµi = ∆(T,H) [ûµûi + rv̂µv̂i − (1 + r)ŵµŵi] , (2)

with a orthonormal triad (û, v̂, ŵ). This state corre-

sponds to highly degenerate minima of F with respect
to r ∈ [−1,−1/2]. At r = −1/2, dµi is invariant under
D∞ = SO(2)"Z2 ≃ O(2) (" is a semi-direct product),
which is called the uniaxial nematic (UN) phase. As
shown in Fig. 1(b), the full gap with the hedgehog d-
vector is accompanied by the U(1) axis along ŵ and C2

rotation axes in the v̂-ŵ plane. The biaxial nematic (BN)
phase at r=−1 remains invariant under the dihedral-four
D4 symmetry, which has C4 and C2 axes. The interme-
diate r holds the D2 symmetry with three C2 axes.
In Fig. 1(c), we display the phase diagram under

a magnetic field. This is obtained by minimizing
the Luttinger-Ward thermodynamic potential, δΩ[g] =
NF

2

∫ 1
0 dλ⟨TrS(k̂)[gλ(k̂,ωn) − 1

2g(k̂,ωn)]⟩, where ⟨· · · ⟩=
kBT

∑

n

∫

dk̂
4π · · · denotes the Fermi surface average and

sum over the Matsubara frequency ωn=(2n+1)πkBT/!
(n∈Z) [56–58]. The propagator g, which is a 4×4 ma-
trix in the Nambu space, is obtained from the low-energy
part of the Matsubara Green’s function, and the higer
energy part is renormalized into the Fermi liquid param-
eters [56]. The propagator is governed by the equation

[iωn − v −S{g}, g(k̂, r;ωn)] + ivFµ∂rµg(k̂, r;ωn) = 0,(3)

which is supplemented by the normalization condition,
g2 = −π2 (we set ! = 1). This is the transport-like
equation propagating along the classical trajectory of the
Fermi velocity vF. gλ is obtained by replacing S '→λS.
The Zeeman term, v =− 1

2
1

1+F a
0

γ!H · diag(σ,−σ2σσ2),
is rescaled by the Fermi liquid parameter F a

0 . The theory
is reliable in the weak coupling limit, ∆/EF∼Tc0/TF≪1
(Tc0 is the transition temperature at H=0), and applica-
ble to whole temperatures beyond the GL regime [56–58].
The Fermi liquid behaviors and strong coupling correc-
tions in dense neutrons were investigated in Refs. [59–63].
The 4×4 self-energy matrix S contains informations

on both quasiparticles and 3P2 pair potentials. The
3P2 pair potentials, which appear in the off-diagonal
submatrix of S, are determined with the spin-triplet
anomalous propagator, f , through the gap equation,
dµi(r) =

V
2 [⟨fµk̂i⟩ + ⟨fik̂µ⟩] − V

3 Tr⟨fµk̂i⟩, where V < 0
is the coupling constant of 3P2 interaction. The diagonal
submatrix of S, ν, represents the Fermi liquid correc-
tions, ν = F a

0

1+F a
0

⟨gµ⟩σµ, where the diagonal submatrix of

g is represented by the 2×2 matrix g0 + gµσµ. The mag-
netization density is Mµ/MN =1 + 2

γ!H ⟨gµ⟩, where MN

denotes the magnetization in the normal state. Hence,
the diagonal self-energy describes an effective exchange
interaction to spin polarization density of neutrons.
No stable region of nonunitary states is found in

Fig. 1(c). According to Fig. 1(a), however, the weak cou-
pling limit is close to the boundary of the cyclic phase and
the cyclic phase is nearly degenerate with the UN/BN
phases. Therefore, the ground state in Fig. 1(c) may be
replaced by the cyclic phase when strong coupling cor-
rections are taken into account.
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FIG. 1: (Color online) (a) GL Phase diagram. (b) Gap and
topological structures of nematic phases. The thick arrows
represent the d-vectors and the inner (red-colored) sphere de-
notes the Fermi sphere. (c) Phase diagram under a magnetic
field, obtained from the superfluid Fermi liquid theory. The
UN phase is stabilized at H = 0 for T < Tc0. The thick
(thin) curve is the first (second) order phase boundary. (d)
C(T )/CN(T ) under fixed magnetic fields.

where c†(k) = [c†↑(k), c
†
↓(k), c↑(−k), c↓(−k)] denotes the

creation and annihilation operators of neutrons in the
Nambu space. Here, ε(k) is composed of the 2× 2
single-particle energy subject to the simultaneous rota-
tion of spin and orbital spaces, SO(3)J , and the Zeeman
field −γ!H · σ/2. Spin-triplet pairs are generally repre-
sented by d(k) and 3P2 order parameter is given by the
second-rank, traceless and symmetric tensor, dµi, where

dµ(k) = dµik̂i and k̂= k/kF. The repeated indices im-
ply the sum over (1, 2, 3) or (x, y, z). The quasiparticle
excitation energy at zero fields is given by diagonalizing
Eq. (1) as E±(k) =

√

ε20(k) + |d(k)|2 ± |d(k)× d∗(k)|,
where ε0(k) = 1

2 trε(k). The Hamiltonian holds the
particle-hole symmetry (PHS), CH(k)C−1 = −H(−k),
with C = τ1K, where K is the complex conjugation op-
erator. In addition, the TRS, T H(k)T −1 = H(−k) with
T = iσ2K, is preserved when dµi∈R and H = 0.
The ground state is determined by minimizing the

Ginzburg-Landau (GL) energy functional F , which is in-
variant under SO(3)J and a gauge transformation, U(1)ϕ.
The functional is given as F = αtr[dd∗] + β1|trd2|2 +
β2[tr(dd∗)]2 + β3tr[d2d∗2] [39]. Depending on βi, there
are several phases as in Fig. 1(a). The ground state at
the weak coupling limit is the nematic phase which is
represented by [37, 39, 55]

dµi = ∆(T,H) [ûµûi + rv̂µv̂i − (1 + r)ŵµŵi] , (2)

with a orthonormal triad (û, v̂, ŵ). This state corre-

sponds to highly degenerate minima of F with respect
to r ∈ [−1,−1/2]. At r = −1/2, dµi is invariant under
D∞ = SO(2)"Z2 ≃ O(2) (" is a semi-direct product),
which is called the uniaxial nematic (UN) phase. As
shown in Fig. 1(b), the full gap with the hedgehog d-
vector is accompanied by the U(1) axis along ŵ and C2

rotation axes in the v̂-ŵ plane. The biaxial nematic (BN)
phase at r=−1 remains invariant under the dihedral-four
D4 symmetry, which has C4 and C2 axes. The interme-
diate r holds the D2 symmetry with three C2 axes.
In Fig. 1(c), we display the phase diagram under

a magnetic field. This is obtained by minimizing
the Luttinger-Ward thermodynamic potential, δΩ[g] =
NF

2

∫ 1
0 dλ⟨TrS(k̂)[gλ(k̂,ωn) − 1

2g(k̂,ωn)]⟩, where ⟨· · · ⟩=
kBT

∑

n

∫

dk̂
4π · · · denotes the Fermi surface average and

sum over the Matsubara frequency ωn=(2n+1)πkBT/!
(n∈Z) [56–58]. The propagator g, which is a 4×4 ma-
trix in the Nambu space, is obtained from the low-energy
part of the Matsubara Green’s function, and the higer
energy part is renormalized into the Fermi liquid param-
eters [56]. The propagator is governed by the equation

[iωn − v −S{g}, g(k̂, r;ωn)] + ivFµ∂rµg(k̂, r;ωn) = 0,(3)

which is supplemented by the normalization condition,
g2 = −π2 (we set ! = 1). This is the transport-like
equation propagating along the classical trajectory of the
Fermi velocity vF. gλ is obtained by replacing S '→λS.
The Zeeman term, v =− 1

2
1

1+F a
0

γ!H · diag(σ,−σ2σσ2),
is rescaled by the Fermi liquid parameter F a

0 . The theory
is reliable in the weak coupling limit, ∆/EF∼Tc0/TF≪1
(Tc0 is the transition temperature at H=0), and applica-
ble to whole temperatures beyond the GL regime [56–58].
The Fermi liquid behaviors and strong coupling correc-
tions in dense neutrons were investigated in Refs. [59–63].
The 4×4 self-energy matrix S contains informations

on both quasiparticles and 3P2 pair potentials. The
3P2 pair potentials, which appear in the off-diagonal
submatrix of S, are determined with the spin-triplet
anomalous propagator, f , through the gap equation,
dµi(r) =

V
2 [⟨fµk̂i⟩ + ⟨fik̂µ⟩] − V

3 Tr⟨fµk̂i⟩, where V < 0
is the coupling constant of 3P2 interaction. The diagonal
submatrix of S, ν, represents the Fermi liquid correc-
tions, ν = F a

0

1+F a
0

⟨gµ⟩σµ, where the diagonal submatrix of

g is represented by the 2×2 matrix g0 + gµσµ. The mag-
netization density is Mµ/MN =1 + 2

γ!H ⟨gµ⟩, where MN

denotes the magnetization in the normal state. Hence,
the diagonal self-energy describes an effective exchange
interaction to spin polarization density of neutrons.
No stable region of nonunitary states is found in

Fig. 1(c). According to Fig. 1(a), however, the weak cou-
pling limit is close to the boundary of the cyclic phase and
the cyclic phase is nearly degenerate with the UN/BN
phases. Therefore, the ground state in Fig. 1(c) may be
replaced by the cyclic phase when strong coupling cor-
rections are taken into account.
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FIG. 1: (Color online) (a) Phase diagram obtained from the
GL theory. (b) Gap and topological structures of nematic
phases within r∈ [−1,− 1

2 ], where the thick arrows represent
the d-vectors and the inner (red-colored) sphere denotes the
Fermi sphere. (c) Gap structure of the upper (lower) band,
E+ (E−), in the cyclic phase. (d) Phase diagram under a mag-
netic field, obtained from the quasiclassical theory. The thick
(thin) curve denotes the first (second) order phase boundary.

Gennes (BdG) Hamiltonian density is given by

H(k) =

(
ε(k) iσ · d(k)σ2

iσ2σ · d∗(−k) −εT(−k)

)
, (1)

where σ (τ ) is the Pauli matrices in spin (Nambu) spaces
and c†(k) = [c†↑(k), c

†
↓(k), c↑(−k), c↓(−k)] denotes the

creation and annihilation operators in the Nambu space.
The repeated indices imply the sum over (1, 2, 3). Here,
ε(k) is composed of the 2×2 single-particle Hamiltonian
density subject to SO(3)J and the magnetic Zeeman term
−γ!H · σ/2. The 3P2 order parameter is given by the
second-rank tensor, dµi, where d(k) = dµik̂i. The quasi-
particle excitation energy at zero fields is given by diag-
onalizing Eq. (1) as

E±(k) =
√
ε20(k) + |d(k)|2 ± |d(k)× d∗(k)|, (2)

where ε0(k) = 1
2 trε(k). The Hamiltonian holds the

particle-hole symmetry (PHS), CH(k)C−1 = −H(−k),
with C = τ1K, where K is the complex conjugation op-
erator. In addition, the TRS, T H(k)T −1 = H(−k) with
T = iσ2K, is preserved when dµi∈R.
The 3P2 order parameter, dµi, reduces to the sym-

metric traceless tensor with five independent compo-
nents. The ground state is determined by minimizing
the Ginzburg-Landau (GL) energy functional F , which is
invariant under the simultaneous rotation of spin and or-
bital spaces, SO(3)J and a gauge transformation, U(1)ϕ.

The functional is given as F =αtr[dd∗] + β1|tr(dd∗)|2 +
β2[tr(dd∗)]2 + β3tr[d2d∗2] [38]. Depending on βi, there
are three different phases as in Fig. 1. The nematic and
cyclic order parameters are given as [36, 38, 48]

dµi = ∆(T,H) [ûµûi +Dv̂µv̂i − (1 +D) ŵµŵi] . (3)

in the basis of the orthonormal triad (û, v̂, ŵ).
In the nematic phase, D in Eq. (3) is specified by the

real-valued parameter, r ∈ [−1,−1/2], while the phase
with D = ei2π/3 is referred to as the cyclic phase. The
former is the unitary state with the TRS, corresponding
to highly degenerate minima of F with respect to r. At
r=−1/2, dµi is invariant under D∞=SO(2)"Z2≃O(2)
(" denotes a semi-direct product), which is called the
uniaxial nematic (UN) phase. As shown in Fig. 1(b),
the full gap with the hedgehog d-vector is accompanied
by the U(1) axis along ŵ and C2 rotation axes in the
û-v̂ plane. The biaxial nematic (BN) phase at r = −1
remains invariant under the dihedral-four D4 symmetry,
which has one C4 and two C2 axes. The intermediate r
holds the dihedral-two D2 symmetry with three C2 axes.

The cyclic phase is the nonunitary state which spon-
taneously breaks the TRS. As displayed in Fig. 1(c), this
phase possesses two distinct bands composed of the full
gap in E+(k) and nodal gap in the E−(k) branch. An-
other phase is known as the ferromagnetic phase, which is
the eigenstate of J=MJ =+2, dµi=∆(ûµ+iv̂µ)(ûi+iv̂i).
This state is equivalent to the A1 phase of 3He [49], where
neutrons with the spin ↑ forms kx+iky pairing, while the
spin ↓ neutrons remains in the normal state.

In Fig. 1(d), we display the phase diagram under a
magnetic field, which is occupied by BN phases. This
is obtained by minimizing the Luttinger-Ward thermo-
dynamic potential with the superfluid Fermi liquid the-
ory [50–53]. The magnetic field gives rise to the pair
breaking in the momentum region within d ·H ̸=0. Con-
sequently, the UN and D2 BN phases are always accom-
panied by the pair breaking because of d · H ̸= 0 for
any H. The most favored configuration of d under H is
d ⊥ H, which can be realized by only the D4 BN phase
with the nodal direction aligned to ŵ∥H.

Two BN phases are separated by the second- (first-)
order phase boundary in the higher (lower) T regime.
The phase boundaries meet at the tricritical point at
(T/Tc0, γ!H/πkBTc0) = (0.45, 0.083), where Tc0 is the
transition temperature at H = 0. In recent years, neu-
tron stars having strong magnetic field H=1013-1015 G
have been observed [54–57], where γ!H/πkBTc0 is esti-
mated as 0.001-0.1 with Tc0 = 0.2 meV. The first-order
phase boundary is sensitive to F a

0 that characterizes the
magnetic response of the normal Fermi-liquid, and the re-
gion is enlarged (reduced) by negative (positive) F a

0 . This
is attributed to the difference of the magnetic response.
The D2 BN phase which has the hedgehog d-vector sup-
presses the magnetization relative to that in the normal
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FIG. 1: (Color online) (a) Phase diagram obtained from the
GL theory. (b) Gap and topological structures of nematic
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2 ], where the thick arrows represent
the d-vectors and the inner (red-colored) sphere denotes the
Fermi sphere. (c) Gap structure of the upper (lower) band,
E+ (E−), in the cyclic phase. (d) Phase diagram under a mag-
netic field, obtained from the quasiclassical theory. The thick
(thin) curve denotes the first (second) order phase boundary.

Gennes (BdG) Hamiltonian density is given by

H(k) =

(
ε(k) iσ · d(k)σ2

iσ2σ · d∗(−k) −εT(−k)

)
, (1)

where σ (τ ) is the Pauli matrices in spin (Nambu) spaces
and c†(k) = [c†↑(k), c

†
↓(k), c↑(−k), c↓(−k)] denotes the

creation and annihilation operators in the Nambu space.
The repeated indices imply the sum over (1, 2, 3). Here,
ε(k) is composed of the 2×2 single-particle Hamiltonian
density subject to SO(3)J and the magnetic Zeeman term
−γ!H · σ/2. The 3P2 order parameter is given by the
second-rank tensor, dµi, where d(k) = dµik̂i. The quasi-
particle excitation energy at zero fields is given by diag-
onalizing Eq. (1) as

E±(k) =
√
ε20(k) + |d(k)|2 ± |d(k)× d∗(k)|, (2)

where ε0(k) = 1
2 trε(k). The Hamiltonian holds the

particle-hole symmetry (PHS), CH(k)C−1 = −H(−k),
with C = τ1K, where K is the complex conjugation op-
erator. In addition, the TRS, T H(k)T −1 = H(−k) with
T = iσ2K, is preserved when dµi∈R.
The 3P2 order parameter, dµi, reduces to the sym-

metric traceless tensor with five independent compo-
nents. The ground state is determined by minimizing
the Ginzburg-Landau (GL) energy functional F , which is
invariant under the simultaneous rotation of spin and or-
bital spaces, SO(3)J and a gauge transformation, U(1)ϕ.

The functional is given as F =αtr[dd∗] + β1|tr(dd∗)|2 +
β2[tr(dd∗)]2 + β3tr[d2d∗2] [38]. Depending on βi, there
are three different phases as in Fig. 1. The nematic and
cyclic order parameters are given as [36, 38, 48]

dµi = ∆(T,H) [ûµûi +Dv̂µv̂i − (1 +D) ŵµŵi] . (3)

in the basis of the orthonormal triad (û, v̂, ŵ).
In the nematic phase, D in Eq. (3) is specified by the

real-valued parameter, r ∈ [−1,−1/2], while the phase
with D = ei2π/3 is referred to as the cyclic phase. The
former is the unitary state with the TRS, corresponding
to highly degenerate minima of F with respect to r. At
r=−1/2, dµi is invariant under D∞=SO(2)"Z2≃O(2)
(" denotes a semi-direct product), which is called the
uniaxial nematic (UN) phase. As shown in Fig. 1(b),
the full gap with the hedgehog d-vector is accompanied
by the U(1) axis along ŵ and C2 rotation axes in the
û-v̂ plane. The biaxial nematic (BN) phase at r = −1
remains invariant under the dihedral-four D4 symmetry,
which has one C4 and two C2 axes. The intermediate r
holds the dihedral-two D2 symmetry with three C2 axes.

The cyclic phase is the nonunitary state which spon-
taneously breaks the TRS. As displayed in Fig. 1(c), this
phase possesses two distinct bands composed of the full
gap in E+(k) and nodal gap in the E−(k) branch. An-
other phase is known as the ferromagnetic phase, which is
the eigenstate of J=MJ =+2, dµi=∆(ûµ+iv̂µ)(ûi+iv̂i).
This state is equivalent to the A1 phase of 3He [49], where
neutrons with the spin ↑ forms kx+iky pairing, while the
spin ↓ neutrons remains in the normal state.

In Fig. 1(d), we display the phase diagram under a
magnetic field, which is occupied by BN phases. This
is obtained by minimizing the Luttinger-Ward thermo-
dynamic potential with the superfluid Fermi liquid the-
ory [50–53]. The magnetic field gives rise to the pair
breaking in the momentum region within d ·H ̸=0. Con-
sequently, the UN and D2 BN phases are always accom-
panied by the pair breaking because of d · H ̸= 0 for
any H. The most favored configuration of d under H is
d ⊥ H, which can be realized by only the D4 BN phase
with the nodal direction aligned to ŵ∥H.

Two BN phases are separated by the second- (first-)
order phase boundary in the higher (lower) T regime.
The phase boundaries meet at the tricritical point at
(T/Tc0, γ!H/πkBTc0) = (0.45, 0.083), where Tc0 is the
transition temperature at H = 0. In recent years, neu-
tron stars having strong magnetic field H=1013-1015 G
have been observed [54–57], where γ!H/πkBTc0 is esti-
mated as 0.001-0.1 with Tc0 = 0.2 meV. The first-order
phase boundary is sensitive to F a

0 that characterizes the
magnetic response of the normal Fermi-liquid, and the re-
gion is enlarged (reduced) by negative (positive) F a

0 . This
is attributed to the difference of the magnetic response.
The D2 BN phase which has the hedgehog d-vector sup-
presses the magnetization relative to that in the normal
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tions. It appears that it doesn't matter whether the impurity ions carry a magnetic 
moment or not. The impurity- or imperfection softness of this type of supercon- 
ductivity was early recognized in the case of CeCu2Si213 and the same tendency 
has subsequently been found for UBe1314 and UPt3)  5 In fig. 3 we demonstrate 
the drastic impurity effects on the transition of UBe13, if U sites are being occupied 
by other species of a toms)  6 Not only is T~ reduced very effectively but also the 
magnitude of the Cp anomaly is drastically reduced in most cases. In particular 
it should be noted, that also a disturbance of the Be sublattice may be extremely 
harmful even for very small amounts of substitutional atoms as, e.g., in the case of 
Cu atoms being introduced on Be sites. 

More attractive than the destruction of superconductivity by impurities are 
exceptional cases where particular substitutions of atoms appear to change the 
superconducting state in another way. An outstanding example for this type of 
behaviour is related with small amounts of Th replacing U in UBe13J z For com- 
pounds Ul_zThzBe13 and growing x the critical temperature Tc is first reduced in 
the same manner as observed for other impurities. For x exceeding 0.018, however, 
Tc rises again, passes over a maximum in the range of x~  0.03 and decreases again 
with further increasing x. This unexpected and non-monotonous variation of To(x) 
is accompanied by an even more surprising phenomenon. For 0.02 < x < 0.045, a 
second transition within the superconducting state is indicated by distinct anoma- 
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Fig. 1. (color online) Phase diagram of the superfluid 3He confined in a slab geometry under a magnetic field parallel to the surface (center), where the
temperature is set to be T = 0.4Tc0 and D and H are the thickness of the slab and the magnitude of an applied field, respectively. The thin (thick) curves is the
first (second) order transition line.

tum liquid down to zero temperatures and the normal state
maintains huge continuous rotation symmetries in spin and
coordinate spaces, independently. (ii) The bulk superfluidity
of 3He has been well established as spin-triplet odd-parity
pairing.31, 32 The A phase that appears in the high temperature
and pressure region is identified as the chiral p-wave pairing
with spontaneously broken time-reversal symmetry,33, 34 and
the B phase is known as a fully gapped pairing with time-
reversal symmetry35 (see Figs. 1 and 9). The superfluid 3He
having huge order parameter manifolds has fascinated many
physicists not only as a prototype of unconventional super-
conductors but also as a treasure box of topology of order
parameter manifolds, such as textures, Nambu-Goldstone and
Higgs modes, and topological excitations.16, 32, 36–38 (iii) Re-
cent development on nanofabrication techniques enables one
to confine the quantum liquid to a variety of geometries, such
as a single slab and narrow cylinders with a thickness/radius
comparable to the superfluid coherence length.39–45 In these
geometries, the planar, polar, and crystalline ordered phases
become energetically competitive to the A and B phases.46–50

(iv) The surface density of states peculiar to gapless quasi-
particle states was already observed in specific heat measure-
ments and high precision spectroscopy based on transverse
acoustics with well controlled surface conditions.51–57

Motivated by puzzling issues on the intrinsic angular mo-
mentum paradox, the investigations on the nontrivial momen-
tum space topology were first initiated in 3He by Stone et
al.58, 59 and Volovik,60, 61 independently. In connection with an
analogue of a two-dimensional 3He-A thin film to the quan-
tum Hall effect and gauge theories, Volovik60, 62–64 futher un-
covered the remarkable fact that the pairwise point nodes on
the Fermi surface are protected by the first Chern number as a
“magnetic” monopole, and low-energy quasiparticles near the
Fermi points behave as chiral Weyl fermions. The superfluid
3He-A thin film is now widely recognized as a prototype of

Weyl superconductors,16, 65–70 which is accompanied by zero
energy flatband terminated to pairwise Weyl points.71–75

As mentioned above, recent development on topological
classifications clarified the distinct topological structures be-
tween the A and B phases; The 3He-A thin film is a Weyl su-
perconductor characterized by the first Chern number, while
the bulk B phase possesses topological superfluidity pro-
tected by the time-reversal symmetry.8, 12–15 Furthermore, it
has been proposed that the marriage of the superfluid 3He
with nanofabrication techniques gives rise to a diversity of
topological phenomena intertwined with symmetry.49, 75, 76

As displayed in Fig. 1, for instance, a confined 3He un-
der a magnetic field has nontrivial phase diagram composed
of a variety of topological and nontopological phases: The
symmetry-protected topological phase BI, symmetry-broken
non-topological phase BII, Wely superfluid A phase, the pla-
nar phase, and crystalline ordered “stripe” phase. The critical
field H∗ in Fig. 1 is identified as the topological phase transi-
tion concomitant with spontaneous symmetry breaking24 and
is accompanied by noteworthy topological quantum critical
phenomena, such as emergent supersymmetry.77 Contrary to
the A phase, the pairwise point nodes in the planar phase are
protected by a mirror reflection symmetry and the zero energy
flatband emergent in the surface exhibits anisotropic magnetic
responses.27, 76, 78 It is also interesting to note that apart from
the topological aspect of 3He, there have been a long history
of investigations on gapless quasiparticles in the direction of
Andreev bound states.79, 80 Nowadays Majorana fermions are
identified as a special kind of surface Andreev bound states in
the context of topological superconductors nowadays.5

This article gives a comprehensive review of recent
progress on symmetry protected topological superfluids and
topological crystalline superconductors with a special focus
on 3He. In Sec. 2, we start with the minimal model that cap-
tures an essence of the topological aspect of superfluids and
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Observation of a New Sound-Attenuation Peak in Superfluid 3He-8
R. W. Giannetta, ' A. Ahonen, ~ E. Polturak, J. Saunders,

E. K. Zeise, R. C. Richardson, and D. M. Lee
Laboratory ofAtomic and Solid State Physics and Materials Science Center, Cornell University,

Ithaca, Ne~ Yo~k 14853
(Received 25 March 1980)

Results of zero-sound attenuation measurements in 3He-~, at frequencies up to 60
MHz and pressures between 0 and 20 bars, are reported. At frequencies of 30 MHz
and above, a new attenuation feature is observed which bears the signature of a collec-
tive mode of the superfluid.

PACS numbers: 67.50.Fi
Zero sound has proven to be an important

probe of the quantum properties of liquid 'He.
The first observations of zero sound by Keen,
Matthews, and Wilks' and Abel, Anderson, and
Wheatley' provided a striking confirmation of
the Landau theory of a normal Fermi liquid.
Soon after the discovery of the superfluid phases
of 'He, measurements by Lawson et al. ' and
Paulson, Johnson, and Wheatley4 revealed a
large peak in the attenuation of zero sound locat-
ed just below the superfluid transition tempera-
ture (T,). Such peaks, occurring in both 'He-A
and 'He-B, have since been attributed to the reso-
nant excitation, by the sound wave, of a collective
oscillation of the superfluid, as well as to sound
absorption through direct breaking of Cooper
pairs. ' ' For 'He-B, the resonant excitation of
the collective mode is predicted to occur at a
temperature satisfying the relation

&~ =(—")'"& (T)

where b, s(T) is the energy gap in 'He Band u is-
the angular frequency of the sound wave. Pair
breaking takes place in the temperature interval
S~ ~ 2b, s(T). Measurements' up to 25 MHz show
a single attenuation peak near T„which is pre-
sumably caused by an overlap of these two peaks
due to quasiparticle broadening effects. ' In this
Letter we report results of zero-sound attenua-
tion measurements in 'He-B at a variety of pres-
sures between 0 and 20 bars and frequencies be-
tween 10 and 60 MHz. ' Our most striking result
is the observation of an unexpected attenuation
peak, in addition to the one usually observed, '"
which bears the clear signature of a collective
mode of the liquid.
The measurements reported here were carried

out in two separate cells, each mounted in a nu-
clear demagnetization cryostat capable of opera-
tion down to 0.7 mK. The first cell contained two
10-MHz fundamental X-cut quartz transducers
separated by 0.769 cm. The second cell contained
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Raman Scattering by Superconducting-Gap Excitations and Their Coupling
to Charge-Density %Vaves

R. Sooryakumar and M. V. Klein
Department of 2%ysics and Materials Research Laboratory, University of Illinois at Urbana C-hampaign,

Uybana, glinois 61801
(Received 24 March 1980)

2H-Nbse~ undergoes a charge-density —wave (CDW) distortion at 33 K which induces
A and E Raman-active phonon modes. These are joined in the superconducting state at
2 K by new A and E Raman modes close in energy to the BCS gap 24. Magnetic fields
suppress the intensity of the new modes and enhance that of the CDW-induced modes, thus
providing evidence of coupling between the superconducting-gap excitations and the CD%.

PACS numbers: 78.30.Er, 74.30.6n, 74.70.Lp
Structural phase transitions involving charge-

density waves (CDW) in layered transition-metal
dichalcogenides have been studied extensively in
the last several years. ' Neutron diffraction stud-
ies' on 2tI-NbSe, show a transition from a nor-
mal lattice to one with a three-wave-vector in-
commensurate CDW at the onset temperature T„
of 33 K. The CDW is only a few percent out of
commensurability and the neutron data show that
it remains incommensurate down to 5 K. From
the modulus measurements of Barmatz, Testardi,
and DiSalvo' it is concluded that incommensura-
bility persists at least to 1.3 K. 2H-NbSe, is a
highly anisotropic type-II superconductor below
7.2 K.' The upper critical fields at 2 K may be
estimated from published data' and are found to
be 1Q5 and 42 ko for fields parallel and perpen-
dicular to the layers, respectively. Magnetore-
sistance studies on 2H-NbSe, have been carried
out by Morris, Coleman, and Bhandari. '
Figure 1 shows four pairs of Raman spectra

[(a)-(d)J from two different samples of 2H-NbSe„
M and B, at two different temperatures, 9 K (low-
er curves in each pair) and 2 K (upper curves)
for A and E Raman symmetries. The character-
istic CDW-induced amplitude modes (C) are near
40 cm-'. ' On cooling below 33 K, they first ap-
pear, then harden, and get stronger. ' The main
purpose of this paper is to report that when the
sample is immersed in superfluid helium at 2 K
two new Raman-active modes are seen at 18 cm '
(A) and at 15 cm ' (E), close in energy to the
BCS gap at 24. These are labeled G in Fig. 1. It
is also noted from this figure that the position of
these new peaks (G) is sample independent while
the position and strength of the CDW modes (C)
are sample dependent. This may be explained by
the work of Huntley' and Long, Bowen, and Lew-
is,' where it was shown that crystal growth tech-
niques have a small effect on superconductivity
whereas Hall-coefficient studies" indicate that

defects and impurities inhibit the formation of
CDW's.
From Figs. 1(c) and 1(d), where all curves

have the proper relative intensities, we find that
the CDW modes lose intensity when the new "gap"
modes appear. This direct coupling bebveen
modes C and 6 is shown more dramatically in
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FIG. l. Raman spectrum of samples M and B. The
lower curve of each pair [{a)-{d)] is at 9 K and the
upper at 2 K. Raman symmetries I,polarizations] are
E l{xy)l and A t(xx) —{&y)]. C labels CDW modes;
G, gap excitations; and I, the interlayer mode char-
acteristic of the 2H polytype. Incident laser beam at
5145 A and 30 mW power was spread into a line 40-50
p, m wide. Light was incident at the pseudo Brewster
angle; the scattered light collected along the c axis.
Resolution was 3 cm '. Curves (a) and (b) were drawn
by hand while (c) and {d) represent a five-point smoothed
plot through original data points. The upper curves in
the E spectra have been moved up by 20 counts/sec
while the 4 curves in (b) and (c) by 40 counts/sec The.
9- and 2-K data for sample M in (a) and (b) are each
from the same run. The same is true for sample B,
with the addition that (c) and (d) have been normalized
with respect to the intensity of the A «phonon at about
230 cm ' (Ref. 7).
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Measurements of High-Frequency Sound Propagation in 'He-8
D. B. Mast, Bimal K. Sarma, J. R. Owers-Bradley, I. D. Calder,

J. B. Ketterson, and W. P. Halperin
Department of Physics and Astronomy and Materials Research Center, lVorthzuestern University,

Evanston, EEEinois 60201
(H,eceived 10 April 1980)

Measurements of the attenuation and velocity of pulsed high-frequency sound have been
performed up to 133 MHz in superfluid 3He-B. A new collective mode of the order para-
meter was discovered at a frequency extrapolated to T of ~ =(1.165+0.05)D~s(T ),
where Q~s(T) is the energy gap in the weak-coupling BCS theory. The group velocity
has been observed to decrease by as much as 3 of the zero-sound velocity.

PACS numbers: 67.50.Fi

Since the discovery of superfluidity in He there have been intense experimental and theoretical ef-
forts to characterize' this unique state of matter. As a result it is now generally accepted that the
superfluid A and B phases are l =1, triplet pairing states: the Anderson-Brinkman-Morel (ABM) state
and the Balian-Werthamer (BW) state, respectively. One important step in establishing the correct
assignment of these states is the agreement between the theory of acoustic attenuation and experiment.
In particular the BW state is characterized by a multicomponent order parameter, with amplitude A(T),
isotropic in momentum space and given approximately by

A(T) = d tanh(mk T, /~, t(T, /T —I)2~C/3C]"'},
where bC/C is the heat capacity jump at T, .
Propagating sound waves couple to the superfluid
condensate in two ways: through collective-mode
resonances of the order parameter and through
pair breaking. In the first case there is a distor-
tion of the orbital structure of the order param-
eter resulting in a peak in sound attenuation when
~ =a,.A(T); ~ is the sound frequency, b(T) is ex-
pressed in frequency units, and a,. are numbers
of order 1 for each mode i, characteristic of the
microscopic superfluid state. Values for a,. = 0,
('-,')"', and 2 have been found" for the BW state in
a weak-coupling BCS calculation in zero magnetic
field. Consequently the experimental determina-
tion of a, or the observation of new modes, as in
this work, is of fundamental significance. Inclu-
sion' of the dipolar interaction in the theory leads
to a splitting of the ('-,')v' mode into three compo-
nents, a phenomenon which has not yet been ob-
served.
For the experimental results shown in Fig. 1,

the acoustic frequency is fixed and the attenua-
tion and velocity of sound are measured as a
function of temperature. At a low frequency such
as 12 MHz, there is a peak in attenuation at a
temperature T, just below the superfluid transi-
tion temperature T, . Previous work4 as well as
our own at frequencies below 25 MHz indicate that
a& is between 6' and 10/o less than ('-,')v' if A(T)
is calculated from Eq. (1) using recent measure-
ments of the superfluid phase diagram" and heat

(1)
~ capacity jumps. ' At these low frequencies To is
within lg of T, . Clearly this attenuation peak
corresponds to a collective mode of the order
parameter; however, the lack of a precise agree-
ment with the theory may indicate inadequacy in
the weak-coupling approximation.
To investigate this situation further we have ex-

tended measurements to frequencies as high as
133 MHz. In Fig. 1 our measurements at 12.95
bars show that the low-frequency attenuation peak
evolves into a large unresolvable attenuation pro-
file at higher frequencies as expected theoreti-
cally. ' However, at 60 and 84 MHz a new and
much weaker attenuation peak appears. This was
also observed at 36 MHz for a pressure of 11.7
bars. At temperatures where the attenuation in-
creases sharply we have observed that the group
velocity of an acoustic pulse decreases by as
much as a factor of 3 below that of the velocity of
zero sound. To our knowledge such enormous
velocity changes associated with a mode crossing
have not been observed before in other physical
systems.
The 3He was cooled to a minimum temperature

of 0.41 mK by nuclear adiabatic demagnetization
of 19 mol of copper starting from an average mag-
netic field of 6.5 T and temperatures near 20 mK.
Temperatures in the 'He were determined from
the susceptibility of La, »Ce, »MNO, ."This
thermometer was calibrated against the nuclear
susceptibility X of Pt powder which was assumed
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Collective Modes in 3He-B
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TABLE I: Irreducible tensor representations, {t
(J,M)
i j }, of SO(3)J

for J ≤ 2, and corresponding spherical harmonics, YJM(p̂). The

base unit vectors: e
(0)
i = ẑi, e

(+)
i = − 1√

2
(x̂i + iŷi) and e

(−)
i =

+ 1√
2
(x̂i − iŷi) are orthonormal: e(µ)∗ · e(ν) = δµν .

where the set of nine spherical tensors defined in Table I (i)
span the space of rank-two tensors, (ii) form irreducible rep-
resentations of SO(3)J and (iii) satisfy the orthonormality con-
ditions,

Tr
{

t̂(J,m)†
t̂(J

′,m′)
}
= δJ,J′ δm,m′ . (15)

In the absence of a perturbation that breaks the rotational
symmetry of the ground state, there are (2J + 1) degenerate
modes with spin J. There is, in addition, a doubling of the
Bosonic modes related to the discrete symmetry of the nor-
mal Fermionic ground state under charge conjugation. Thus,
the full set of quantum numbers for the Bosonic spectrum is
{J,m,c} where c = ±1 is the parity of the Bosonic mode un-
der charge conjugation. The parity eigenstates are the linear
combinations (i.e. real and imaginary amplitudes)63

D
(c)
J,m = (DJ,m + cD†

J,m)/2 . (16)

The sources can also be expanded in this basis: ηαi =

∑J,m,c η(c)
J,m t

(J,m)
αi . The equations for the 18 Bosonic modes

then decouple into three doublets labeled by J,c, each of
which is 2J+1-fold degenerate as shown in Table II.

The equations of motion for the 18 Bosonic modes are ob-
tained by projecting out the J,m,c components of Eq. 13. In
the limit q = 0 the modes decouple into three doublets labeled
by J,c, each of which is 2J + 1-fold degenerate. The disper-
sion of the Bosonic modes can be calculated perturbatively to
leading order in (v f |q|/∆)2. Thus, the resulting equations of
motion can be expressed as

∂ 2
t D

(c)
J,m +ω(c)

J,m(q)
2 D

(c)
J,m =

1

τ
η(c)

J,m , (17)

where ω(c)
J,m(q) =

√
M 2

J,c +
(

c
(c)
J,|m||q|

)2
, (18)

Mode Symmetry Mass Name

D
(+)
0,m J = 0, c =+1 2∆ Amplitude

D
(−)
0,m J = 0, c =−1 0 Phase Mode

D
(+)
1,m J = 1, c =+1 0 NG Spin-Orbit Modes

D
(−)
1,m J = 1, c =−1 2∆ AH Spin-Orbit Modes

D
(+)
2,m J = 2, c =+1

√
8
5 ∆ 2+ AH Modes

D
(−)
2,m J = 2, c =−1

√
12
5 ∆ 2− AH Modes

TABLE II: Bosonic Mode Spectrum for the B-Phase of 3He. The
masses of the modes are given for weak-coupling in the GL limit.

is the dispersion relation for Bosonic excitations with with
quantum numbers {J,m,c} and MJ,c is the corresponding ex-
citation energy at q = 0, i.e. the mass. For q ̸= 0 the degener-
acy of the Bosonic spectrum is partially lifted, i.e. the veloc-

ities, c
(c)
J,|m|, give rise to a dispersion splitting that depends on

|m|, with quantization axis q.29,30

A. J = 0 Modes

The masses and velocities of the Bosonic modes obtained
from the TDGL Lagrangian in the weak-coupling limit are
summarized in Table II. The J = 0 modes correspond to the
two Bosonic modes that are present for any BCS conden-

sate of Cooper pairs, i.e. excitations of the phase, D
(−)
0,0 ,

and amplitude, D
(+)
0,0 , with the same internal symmetry as

the condensate of Cooper pairs. The Jc = 0− mode is the
Anderson-Bogoliubov (AB) phase mode. In particular, if we
consider only fluctuations of the phase of the BW ground state,

Aαi = Bαi eiϑ(r,t) ≈ Bαi(1+ iϑ(r, t)), then D
(−)
0,0 = i∆ϑ(r, t).

This is the massless NG mode corresponding to the broken

U(1) symmetry, with the dispersion relation ω(−)
0,0 = c0,0|q|.

Within the TDGL theory the AB mode propagates with veloc-

ity c0,0 =
√

(K1 +
1
2 K23)/τ . In the weak-coupling limit for the

effective action derived by Bosonization of the Fermionic ac-
tion the velocity is c0,0 = v f /

√
3,31 showing that the Bosonic

excitation energies are determined by the properties of the un-
derlying Fermionic vacuum - in this case the group veloc-
ity of normal-state Fermionic excitations at the Fermi sur-
face. However, this result for the velocity of the NG phase
mode is further renormalized by coupling of the phase fluctu-
ations to dynamical fluctuations of the underlying Fermionic
vacuum which are absent from the Bosonic action based on
the TDGL Lagrangian of Eq. 11. This coupling leads to
c0,0 → c1+(c0−c1)Y (T/Tc), where c1(c0) is the first (zero)
sound velocity of the interacting normal Fermi liquid and
Y (T/Tc) measures the dynamical response of the condensate.
In particular, Y → 0 (Y → 1) for T → 0 (T → Tc). This re-
markable result shows that the velocity of the NG phase mode
is renormalized to the hydrodynamic sound velocity of normal
3He at T = 0, and that the J = 0,c =−1 NG mode is manifest
in superfluid 3He as longitudinal sound.32–34

J.	  A.	  Sauls	  and	  TM,	  arXiv:1611.07273	  (PRB	  in	  press)



perspective of both condensed matter and high energy
physics.

The collective modes were experimentally discovered
previously in the superfluid 3He independently by Giannetta
et al [16, 17] (see figure 1(b)), and by Mast et al [18] in 1980
and were eventually found to be in complete agreement with
the Nambu identity. The collective modes found in the

superfluid 3He B-phase have masses m 8 51 = D and
m 12 52 = D. Thus the collective modes satisfy the Nambu
relation (1) identically.

In this Comment we review the Nambu identity and
compare it with the collective modes experimentally
found in the superfluid 3He B-phase. The fermion–fermion
interaction is mediated by the Feynman vacuum ‘bubble’
diagrams depicted on figures 1(c) and 2. The Feynman
vacuum diagrams represent the meson exchange between
the interacting fermions. The interaction carried by the mas-
sive σ meson is described by the vacuum Feynman diagram

J q g
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G p
q

G p
q

i
d
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2 2

, 2
4

4 1 1( )
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where we used the standard notation [3, 4, 10]. The
interaction carried by the massless π meson is described by
the Feynman diagram
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Here g is the coupling constant, q is the incoming four-
momentum, p is the loop four-momentum, it are the Pauli
matrices, and G p( ) is the bare fermion propagator

G p
p

p i
. 4p

p

0 3 1

0
2 2 2

( ) ( )
�

t e t

e
=

+ + D

- - D +

The Feynman vacuum diagrams represent the meson
exchange between the interacting fermions as one can clearly
see from the figure (2). Traces of the Pauli matrices can be
directly obtained from

Tr 2 , 5i k ik[ ] ( )t t d=

Tr 2i , 6i k l ikl[ ] ( )t t t e=

Tr 2 , 7i k l j ik lj ij kl il kj( )[ ] ( )t t t t d d d d d d= + -

where ikle is the unit antisymmetric tensor of the third rank.
The integrals (2), (3) become

and

Figure 1. (a) Double well potential with a polar massless mode π and
radial massive mode σ. (b) Early evidence of the collective modes
and pair breaking peaks in the superfluid 3He B-phase [16–21]. (c)
Feynman diagram for the massive σ mode and for the massless π
mode with the Pauli matrices 1t and 2t in the vertex, correspond-
ingly. The Feynman diagram carries the four momentum p along the
loop, while the incoming momentum q propagates through the
chains of the Feynman loop diagrams and thus establishes the
fermion–fermion interaction [3, 4]. (d) Schematic plot of the five-
fold splitting of the collective modes in the superfluid 3He B-phase
in a magnetic field [16–21].
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two 20-MHz fundamental transducers separated
by 0.318 cm." This combination allowed meas-
urements at 10, 20, 30, 50, and 60 MHz. Both
cells were in good thermal contact with a lantha-
num-diluted cerium-magnesium-nitrate ther mom-
eter whose susceptibility was monitored by a
SQUID detection system. The thermometer was
calibrated against 7, as a function of pressure
with the Pt Helsinki scale. " The detection scheme
used in the experiment is described in detail else-
where. " Briefly, we used a phase-sensitive sys-
tem capable of resolving both the in- and out-of-
phase components of the received sound signal,
relative to a stable reference signal operating
in a phase-locked loop fixed at the drive frequen-
cy. The gain of the system was independent of
phase to within 3-4P& The sound attenuation and
phase velocity shift, bc, were obtained from the
changes of the signal amplitude and phase, re-
spectively. As an overall check on all of our
measurements, we have selectively compared
the data obtained using the phase-sensitive sys-
tem to that obtained from a non-phase-sensitive
detector and a boxcar integrator. The attenua-
tion data showed no dependence upon the detec-
tion scheme used, as long as the variation in c
was less than -1%. With larger changes in c, the
phase-sensitive method becomes less reliable
because of changes in the resonant frequency of
the transducers, and for these cases, the data
were obtained by our second method.
In Fig. 1, we show the attenuation of 60-MHz

zero sound versus reduced temperature, at a
pressure of 5.3 bars. The peak location of the
main attenuation feature near T, cannot be deter-
mined because of loss of the signal in this region,
but we have marked the expected position of the
collective-mode peak as predicted by Eq. (1), as
well as the pair-breaking cutoff temperature,
using the Ginzburg-Landau expression for the en-
ergy gap:

-2 ~gZ (T) =mt Tc
C

where 6C/C„ is the specific heat jump at T„
which was taken from the recent measurements
by the Alvesalo et al." The main attenuation
peak is observed to split into two parts, in agree-
ment with earlier observations by Paulson and
W'heatley.
The new feature, marked y, is completely un-

expected and, to our knowledge, not previously
observed. This extraordinarily narrow attenua-
tion peak was observed at 30, 50, and 60 MHz,

l5- ./12/5h .. 2b, .
E
l0-
0

5-
I-
CI

20jd&

I

0.6
I I

0.8 0.9

~ ~ ~ ~

l.o

FIG. 1. Relative attenuation of 60-MHz sound at 5.3
bars. Arrows show the predicted location of the collec-
tive-mode and pair-breaking attenuation peaks. The
height of the p peak is not known because of loss of the
signal for relative attenuation &16 cm '.

h(u =Ass(T «), (3)

where A is a constant and 6~(T) is given by Eq.
(2). In Table I, we give the values of the y peak
location relative to T„as well as the values"
of AC/C„used to calculate A from the data. The

depending on pressure. At each pressure, there
is a characteristic frequency above which this fea-
ture can be resolved. This presumably results
from the combined effect of the variation with
frequency of the location in temperature of the
y feature and the broadening near T, of the main
attenuation peak, whose width depends on the
ratio h~/r, where 7 is the quasiparticle lifetime
at the Fermi surface (-10-' sec).' Thus, at too
low frequencies the expected position in tempera-
ture of the y feature falls within the region of
high attenuation, where it cannot be resolved. As
the pressure is lowered, the height of this peak
(for a constant frequency) increases and its width
in temperature decreases. This decrease of
width is expected if the broadening is due to quasi-
particle lifetime effects. Using the phase-sensi-
tive detection scheme, we also observe a sound-
velocity change at the y peak. In Fig. 2, we show
both the sound attenuation and the velocity shift
in the vicinity of this feature. The velocity change
is superimposed on a smooth variation of c which
is observed' at temperatures below the main
attenuation peak.
In the absence of any prediction for this fea-

ture, we have tried to characterize it in the most
obvious way, which is to assume
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FIG. 1. Temperature variation of the mode frequency
normalized to 4Bcs(T). Closed circles, Ref. 3; open
circles, this work at pressures between 0.8 and 3.5
bars, at 44.7 MHz. The BCS gap, unlike in Ref. 3,
is exempt of strong-coupling corrections. The inset
shows the attenuation, signal velocity, and change in
the inverse phase velocity at 3.0 bars.

ers with a fundamental frequency of 14.7 MHz,
separated by 4 mm. The excitation tone bursts
are usually below 20 mV (rms) and 4 ~ long. The
demodulation process restores the amplitude and
the phase of the received signal and yields direct-
ly changes of the attenuation 4n and of the in-
verse phase velocity b, (l/C ~). The flight time of
the signal can also be observed and yields the
wave front, or signal velocity. When the disper-
sion and absorption are not too high, this quantity
is also the group velocity of the propagated sound
wave C =[8(&/C ~)/eco] '. Thermometry is based
on platinum NMR signals. The temperature cali-
bration is performed at T, with the T, versus
pressure curve that we have established previous-
ly. ' Low pressures (0 to 3.5 bars and 11.0 bars)
were purposely chosen for two reasons. First it
is our impression that the discrepancies between
various temperature scales' are smaller at low-
er pressures, the maxi~urn difference at 3 bars
amounting to 1.5 MHz. A second and more fun-
damental reason is that the strong-coupling cor-
rections to the gap parameter have been shown
experimentally to be smaller at lower pressures
both close to' and far from" T,. Thus compari-
son with theory may carry more weight.
Let us proceed with other features of the anom-

aly shown in Fig. 1. The mode strength is much
weaker, by several orders of magnitude, than
that of the "squashing" mode, indicating a higher-

—40 -20 0 +20 +40
hT (pK)

FIG. 2. Linear splitting with transverse magnetic
field at 11.0 bars and 74.5 MHz. The bars indicate
the half maximum full linewidth of the lines.

order mechanism. The frequency w is only slight-
ly larger than ABcs, a result obtained without cor-
rections between 0.8 and 3.5 bars. We note that
the signal (group) velocity is significantly altered
and that the phenomenon cannot take place solely
at the boundaries but has to come from the bulk
of the superfluid. Upon scrutiny, two possible
explanations for the anomaly appeared worth in-
vestigating. The first stems from the long-stand-
ing suspicion that there might exist, in superflu-
id 'He, besides P-wave pairing, some higher-
angular-momentum components (l =3, 5). The out-
come of a calculation by Maki and Lin-Liu"
shows that f -wave mixing brings up a second col-
lective mode which couples to sound. However,
a rather high degree of f -wave admixture is re-
quired to depress the mode frequency close to the
observed value h. In such a case, the "squash-
ing" mode at ~~A, should be found only in the vi-
cinity of T,. To check the possibility that the new
mode at 6 would be a reentrance at low T of the
"squashing" mode, we carried out an experiment
at 3.5 bars where the two modes could be ob-
served in the same temperature range on the 3rd
and 5th harmonics of our transducers (at T/T,
=0.79 and 0.58, respectively) and reached a nega-
tive conclusion concerning the existence of p- and
f -wave mixing of adequate strength. A second
possible explanation, raised by Combescot and
one of the present authors, "and also independent-
ly by Koch and Wolf le,"arises from a small de-
parture from particle-hole symmetry which en-
ables the excitation by a sound wave of the realJ=2 mode otherwise coupled to spin-density
waves only. The note that the difference between
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Application to Top Quark Condensation

Construc]on	  of	  a	  model	  for	  dynamical	  electroweak	  symmetry	  breaking	  	  
using	  the	  idea	  from	  3He-‐B

G.E.	  Volovik	  and	  M.A.	  Zubkov,	  PRD	  87,	  075016	  (2013)

composite	  Higgs	  
as	  top	  quark	  condensates

3He-‐B

Nambu	  sum	  rule	  (if	  works)	  may	  express	  the	  mass	  of	  “extra	  Higgs”	  via	  quark	  masses
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Fig. 2. The local p-value as a function of mH in the γ γ decay mode for the com-
bined 7 and 8 TeV data sets. The additional lines show the values for the two data
sets taken individually. The dashed line shows the expected local p-value for the
combined data sets, should a SM Higgs boson exist with mass mH.

presence of a significant excess at mH = 125 GeV in both the 7 and
8 TeV data. The features of the observed limit are confirmed by the
independent sideband-background-model and cross-check analy-
ses. The local p-value is shown as a function of mH in Fig. 2 for
the 7 and 8 TeV data, and for their combination. The expected (ob-
served) local p-value for a SM Higgs boson of mass 125 GeV corre-
sponds to 2.8(4.1)σ . In the sideband-background-model and cross-
check analyses, the observed local p-values for mH = 125 GeV cor-
respond to 4.6 and 3.7σ , respectively. The best-fit signal strength
for a SM Higgs boson mass hypothesis of 125 GeV is σ /σSM =
1.6 ± 0.4.

In order to illustrate, in the mγ γ distribution, the significance
given by the statistical methods, it is necessary to take into ac-
count the large differences in the expected signal-to-background
ratios of the event categories shown in Table 2. The events are
weighted according to the category in which they fall. A weight
proportional to S/(S + B) is used, as suggested in Ref. [121], where
S and B are the number of signal and background events, respec-
tively, calculated from the simultaneous signal-plus-background fit
to all categories (with varying overall signal strength) and inte-
grating over a 2σeff wide window, in each category, centred on
125 GeV. Fig. 3 shows the data, the signal model, and the back-
ground model, all weighted. The weights are normalised such that
the integral of the weighted signal model matches the number of
signal events given by the best fit. The unweighted distribution,
using the same binning but in a more restricted mass range, is
shown as an inset. The excess at 125 GeV is evident in both the
weighted and unweighted distributions.

5.2. H → ZZ

In the H → ZZ → 4ℓ decay mode a search is made for a narrow
four-lepton mass peak in the presence of a small continuum back-
ground. Early detailed studies outlined the promise of this mode
over a wide range of Higgs boson masses [122]. Only the search
in the range 110–160 GeV is reported here. Since there are dif-
ferences in the reducible background rates and mass resolutions
between the subchannels 4e, 4µ, and 2e2µ, they are analysed sep-
arately. The background sources include an irreducible four-lepton
contribution from direct ZZ production via qq and gluon–gluon
processes. Reducible contributions arise from Z+bb and tt̄ produc-
tion where the final states contain two isolated leptons and two
b-quark jets producing secondary leptons. Additional background

Fig. 3. The diphoton invariant mass distribution with each event weighted by the
S/(S + B) value of its category. The lines represent the fitted background and signal,
and the coloured bands represent the ±1 and ±2 standard deviation uncertainties
in the background estimate. The inset shows the central part of the unweighted
invariant mass distribution. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this Letter.)

arises from Z + jets and WZ + jets events where jets are misidenti-
fied as leptons. Compared to the analysis reported in Ref. [25], the
present analysis employs improved muon reconstruction, improved
lepton identification and isolation, and a kinematic discriminant
exploiting the decay kinematics expected for the signal events. An
algorithm to recover final-state radiation (FSR) photons has also
been deployed.

Electrons are required to have pT > 7 GeV and |η| < 2.5.
The corresponding requirements for muons are pT > 5 GeV and
|η| < 2.4. Electrons are selected using a multivariate identifier
trained using a sample of W + jets events, and the working point
is optimized using Z + jets events. Both muons and electrons are
required to be isolated. The combined reconstruction and selection
efficiency is measured using electrons and muons in Z boson de-
cays. Muon reconstruction and identification efficiency for muons
with pT < 15 GeV is measured using J/ψ decays.

The electron or muon pairs from Z boson decays are required to
originate from the same primary vertex. This is ensured by requir-
ing that the significance of the impact parameter with respect to
the event vertex satisfy |S IP| < 4 for each lepton, where S IP = I/σI ,
I is the three-dimensional lepton impact parameter at the point of
closest approach to the vertex, and σI its uncertainty.

Final-state radiation from the leptons is recovered and included
in the computation of the lepton-pair invariant mass. The FSR re-
covery is tuned using simulated samples of ZZ → 4ℓ and tested
on data samples of Z boson decays to electrons and muons. Pho-
tons reconstructed within |η| < 2.4 are considered as possibly due
to FSR. The photons must satisfy the following requirements. They
must be within &R < 0.07 of a muon and have pγ

T > 2 GeV (most
photon showers within this distance of an electron having already
been automatically clustered with the electron shower); or if their
distance from a lepton is in the range 0.07 < &R < 0.5, they must
satisfy pγ

T > 4 GeV, and be isolated within &R = 0.3. Such photon
candidates are combined with the lepton if the resulting three-
body invariant mass is less than 100 GeV and closer to the Z boson
mass than the mass before the addition of the photon.

The event selection requires two pairs of same-flavour, oppo-
sitely charged leptons. The pair with invariant mass closest to the
Z boson mass is required to have a mass in the range 40–120 GeV
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Mass Shift due to Strong Coupling Effects

Es]ma]on	  of	  the	  mass	  of	  extra	  Higgs	  may	  be	  imprecise

Beyond	  TDGL

The	  parent	  state	  is	  the	  Fermi	  liquid	  ground	  state:	  “Fermionic	  vacuum”

Calcula]on	  of	  bosonic	  spectrum	  arising	  from	  the	  “back-‐ac]on”	  of	  the	  fermionic	  vacuum	  
requires	  the	  theory	  that	  includes	  both	  fermonic	  and	  bosonic	  degrees	  of	  freedom
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Superfluid Fermi Liquid Theory
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J = 0 MJ,� = 0

MJ,+ = 0

MJ,+ = 2�

MJ,� = 2�J = 1

the	  spin	  NG	  mode	  acquires	  a	  mass	  when	  magne]c	  dipole	  int.	  is	  taken	  into	  account	  
==>	  LiLle	  Higgs:	  MJ,+	  =	  10kHz	  <<	  2Δ	  ~	  100MHz

Vacuum Polarization Corrections

Masses	  of	  J=0	  and	  J=1	  bosonic	  modes	  are	  unrenormalized	  by	  interac]onsObserva?on	  1

10

of δ ĝ in Eq. 55, the self-consistency equations for the leading
order mean-field self-energies, Eqs. 26, 27 and 35. Two re-
sponse functions are obtained from the propagator in Eq. 57
that determine the Bosonic and Fermionic self-energies,

γ(iωm) = −
1

β ∑
εn

[ 1

D(εn)
+

1

D(εn +ωm)

]
, (62)

λ (iωm) =
2

π2β ∑
εn

|∆2|
D+(εn,ωm)D(εn)D(εn +ωm)

. (63)

The Matsubara sum defining γ(iωm) is log-divergent, regu-
lated by the cutoff Ωc. The frequency dependence of γ can
be neglected, since it gives a negligible correction of order
(ωm/Ωc)2 ≪ 1. Thus,

1

2
γ =

π

β ∑
εn

′ 1√
ε2

n + |∆|2
=

1

v1
, (64)

where the latter equality follows from the equilibrium gap
equations, Eqs. 44 - 46. The function λ (iωm) is defined by

a convergent Matsubara sum. Analytic continuation to real
frequencies of Eq. 63 à la Eq. 47 yields,

λ (ω)≡ |∆|2 λ̄ (ω) = |∆|2
∫ ∞

|∆|

dε√
ε2 − |∆|2

tanh
(

βε
2

)

ε2 −ω2/4
, (65)

which is the Tsuneto function with ω → ω + i0+ defining
the retarded (causal) response.47 For |ω| < 2|∆|, λ (ω) is real
and defines the non-resonant frequency response of the con-
densate, while for |ω| > 2|∆|, Imλ (ω) ̸= 0 is the spectral
density of unbound Fermion pairs. In the T = 0 limit, with
x = ω/2|∆|,

λ (ω)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sin−1(x)

x
√

1− x2
, |x|< 1

1

2x
√

x2 −1

[

ln

∣∣∣∣∣

√
x2 −1− x√
x2 −1+ x

∣∣∣∣∣+ iπsgn(x)

]

, |x|> 1

(66)

Thus, analytic continuation to real frequencies for the q= 0 limit leads to the following dynamical equations for the spin-triplet
Bosonic modes of the B-phase ground state,39–42

d⃗(−)( p̂;ω) = −
∫

dΩp′

4π
V (1)( p̂, p̂′)

{[1

2
γ +

1

4
(ω2 −4|∆|2)λ̄ (ω)

]
d⃗(−)( p̂′;ω)+ λ̄ (ω )⃗∆( p̂′) (⃗∆( p̂′) · d⃗(−)( p̂′;ω))

−
1

2
ω λ̄ (ω) ∆⃗( p̂′)Σ(+)( p̂′;ω)

}
, (67)

d⃗(+)( p̂;ω) = −
∫

dΩp′

4π
V (1)( p̂, p̂′)

{[1

2
γ +

1

4
ω2λ̄ (ω)

]
d⃗(+)( p̂′;ω)− λ̄ (ω )⃗∆( p̂′)(⃗∆( p̂′) · d⃗(+)( p̂′;ω))

+ i
2 ω λ̄ (ω) ∆⃗( p̂′)× Σ⃗(+)( p̂′;ω)

}
, (68)

Note that the equations of motion for the Bosonic fluctuations
of the order parameter couple to the Fermionic self-energies
linearly in the frequency ω , and that only the even orbital par-
ity Fermionic fluctuations contribute in the q = 0 limit.

For the moment we omit pairing fluctuations in higher an-
gular momentum channels, i.e. set vℓ = 0 for ℓ ≥ 3. We then

expand the spin-triplet order parameter amplitudes, d⃗(±)( p̂),

in terms of the p-wave basis, d
(±)
α ( p̂) = D

(±)
αi p̂i, where D

(±)
αi

is equivalent to the bi-vector representation of the order pa-
rameter discussed in the context of the TDGL theory for the
Bosonic modes. For the B-phase ground state with total an-

gular momentum J = 0, i.e. ∆⃗( p̂) = ∆p̂, or equivalently,

Aαi = ∆/
√

3δαi, Eqs. 67 and 68 can be solved by expand-
ing the pairing fluctuations in spherical tensors that define
bases for the representations of the residual symmetry group
of the B-phase, H = SO(3)J, with total angular momentum
J = 0,1,2,

D
(±)
αi = ∑

J=0,1,2
∑

m=−J,+J

D
(±)
J,m t

(J,m)
αi . (69)

Note that time-dependent fluctuations of the Fermionic self-
energy, e.g. ωΣ(+)( p̂;ω), appear as “source” terms in the
equations of motion for the order parameter collective modes.

A. Nambu-Goldstone and Higgs Modes with c =−1

In the case of the modes with parity c =−1 we can express

Σ(+)( p̂;ω) =
even

∑
J

∑
m

Σ
(+)
J,m(ω) p̂i t

(J,m)
i j p̂ j . (70)

Note that only self-energy fluctuations of even J couple to the
Bosonic modes with c =−1. Equation 67 then decouples into
the dynamical equations for Bosonic mode amplitudes with
total angular momentum J. In particular, the equation for dy-
namical fluctuations with Jc = 0− is given by

ω2 D
(−)
0,0 = 2 |∆|ω Σ

(+)
0,0 . (71)

In the simplest case the J = 0 contribution to the Fermionic
self-energy represents a fluctuation in the chemical potential,

Dynamical	  equa?ons	  for	  spin-‐triplet	  bosonic	  modes
generalized	  Tsuneto	  fn.:	  	  
fermionic	  self-‐energies

Bosonic	  fluctua]ons	  couple	  to	  fluctua]on	  of	  self-‐energies	  linearly	  in	  ω

homogeneous	  equa]on

�
!2 � 4|�|2

�
D(!) = 0J = 0+, 1�

cannot	  couple	  to	  neither	  self-‐energy	  fluct.,	  	  
residual	  pairing	  (d-‐,	  f-‐,	  …),	  nor	  external	  fields

J = 0�, 1+ Nambu-‐Goldstone	  modes	  



In	  J=2,	  the	  NSR	  is	  not	  protected	  against	  the	  polariza]ons	  of	  fermion	  vacuum

EOM	  for	  J=2-‐:

bare	  mass J=2	  f-‐wave	  fluct polariza]on	  of	  fermion	  vacuum

h
!2 � (M (0)

2,�)
2
i
D�

2,m +
8

5
�2F�

2,m =
4

5
�!⌃+

2,m

Observa?on	  2

➡Spin-‐fluctua]on	  model	  predicts	  the	  subdominant	  f-‐wave	  aLrac]on	  &	  
the	  f-‐wave	  fluctua]ons	  can	  be	  coupled	  only	  to	  J=2	  bosonic	  modes

T f
c ⌧ T p

c
dµ(p) = Dµip̂i + Fµ,ijkp̂ip̂j p̂k

J=2,	  S=1,	  L=3J=2,	  S=1,	  L=1


1 +

1

5
F s
2�(!)

�
⌃+

2,m(!) =
1

5
F s
2�(!)

⇣ !

2�

⌘ ⇥
D�

2,m(!) + F�
2,m(!)

⇤

Pair	  fluctua]ons	  polarizes	  the	  J=0	  condensate	  vacuum	  	  
&	  generate	  an	  internal	  stress	  propor]onal	  to

1. Fermi	  liquid	  parameter	  (par]cle-‐hole	  interac]on	  channel)	  
2. ]me-‐deriva]ve	  of	  bosonic	  mode	  amplitudes

Self-‐energy	  fluctua?ons

Vacuum Polarization Corrections

J=0	  condensate	  vacuum

J=2



Vacuum Polarization Corrections to Masses of J=2 Modes
J.	  A.	  Sauls	  and	  TM,	  arXiv:1611.07273	  (PRB	  in	  press)

f-‐wave	  fluctua]ons	  
p-‐p	  channel

Dynamical	  signature	  of	  the	  Pomerunchuk	  instability	  of	  the	  fermionic	  vacuum

F a
2 = �0.88 from	  magne]c	  suscep]bility	  



Exp.	  data:	  D.	  Mast	  et	  al.,	  PRL	  45,	  266	  (1980)

J.	  A.	  Sauls	  and	  TM,	  arXiv:1611.07273	  (PRB	  in	  press)

Mass Shift of J=2+ Squashing Modes in 3He-B

T f
c ⇠ 0.01Tc

T f
c = 0

➡Subdominant	  aLrac]ve	  f-‐wave	  interac]on	  plays	  an	  essen]al	  role	  
➡The	  viola]on	  of	  the	  NSR	  for	  J=2	  modes	  is	  order	  of	  20-‐30%	  in	  low	  temperatures



Summary

J=2	  Bosons Fermionic	  self-‐energies

polariza]on	  of	  J=0	  condensate	  vacuum

back-‐ac]on	  of	  vacuum	  polariza]on

(M+
J )2 + (M�

J )2 = (2mf )
2

Nambu	  rela]on	  can	  be	  maintained	  in	  J=0	  sector

In	  J=0	  sector,	  the	  residual	  interac]on	  (dipole	  interac]on)	  explicitly	  breaks	  the	  spin-‐orbit	  
symmetry,	  and	  thus	  the	  spin-‐orbit	  NG	  boson	  acquires	  masses:	  pseudo	  NG	  bosons

Excita]ons	  of	  J=2	  bosons	  generate	  the	  polariza]on	  of	  J=0	  condensate	  vacuum	  and	  	  
the	  back-‐ac]on	  of	  vacuum	  polariza]on	  leads	  to	  the	  mass	  shi{	  of	  J=2	  bosons

➡bosons	  with	  the	  symmetry	  dis]nct	  from	  that	  of	  the	  vacuum	  may	  violate	  
the	  Nambu’s	  mass	  rela]on	  

➡The	  mass	  rela]on	  in	  the	  vacuum	  sector	  is	  always	  rigorous	  ?	  Symmetry	  
protec]on	  of	  Nambu	  iden]ty?



Summary

➡	  Weyl	  fermions	  &	  anomaly	  in	  3He-‐A

(1) l-‐texture:	  effec]ve	  gauge	  field	  for	  Weyl	  fermions	  	  
(2) “Torsional”	  magne]c	  field	  due	  to	  l-‐texture	  
	  	  	  	  	  	  	  ==>	  torsional	  chiral	  magne]c	  effect?

➡Topology	  	  of	  3He-‐B:	  surface	  Majorana	  fermions	  ==>	  Ising	  spin	  &	  spin	  current

➡Quantum	  phase	  transi]on	  at	  the	  cri]cal	  field

3He	  &	  NS	  interiors:	  Topological	  aspect	  of	  unconven]onal	  SF

Topology	  in	  confined	  3He-‐B

Fermions:	  Topological	  phase	  transi?on	  &	  mass	  acquisi?on	  of	  surface	  MF	  
Bosons:	  So{ening	  of	  Ising	  order	  excita]on	  (spin-‐orbit	  pseudo-‐NG)

(eµ1 , e
µ
2 , e

µ
3 ) =

✓
�

kF
m̂µ,

�

kF
n̂µ, vF l̂µ

◆
H(k) = eµj ⌧

j(kµ � kF l̂µ)

➡3P2	  in	  NS	  interiors:	  Nema]c	  (~3He-‐B),	  ferro.	  (~3He-‐A),	  cyclic	  (~3He-‐α)

How	  to	  detect	  the	  Majorana	  nature	  of	  surface	  states?

Tricri]cal	  point	  &	  connec]on	  to	  superconduc]vity	  in	  cubic	  metals

Torsional	  CME	  in	  Weyl	  semi-‐metals:	  Sumiyoshi-‐Fujimoto,	  PRL	  (2016)


