核物理×物性セミナー,千葉工大, Mar. 7, 2017

超流動体における対称性の破れとトポロジー: ³Heから中性子星まで

Takeshi Mizushima

Department of Material Engineering Science, Osaka University

Masatoshi Sato (YITP, Kyoto)

James Sauls (Northwestern)

Kazushige Machida (Ritsumeikan)

Satoshi Fujimoto (Osaka)

Yukio Tanaka (Nagoya)

OUTLINE

³He and Neutron Stars

³He-A: Weyl fermions & chiral anomaly
 ³He-B: Topology & Majorana fermions

Solution Stars **Second Stars Second Stars Sec**

🍚 Nambu Sum Rule

Topological Phases in Confined Superfluid ³He-B

TM, K. Masuda, and M. Nitta, arXiv:1607.07266
J. A. Sauls and TM, arXiv:1611.07273 (PRB in press)
TM, Y. Tsutsumi, T. Kawakami, M. Sato, M. Ichioka, K. Machida, JPSJ 85, 022001 (2016)

Cold Universe

³He & Neutron Stars

1957 BCS theory

- 1960 Anderson-Morel Generalization of BCS
- 1963 Balian-Werthamer most symmetric *p*-wave
- **1970** Spin fluctuation: Layzer-Fay
- 1972 Discovery of SF in ³He
- **1980** Observation of amplitude Higgs
- 1982 Exotic SC in U-compounds

1959 Migdal: prediction of BCS in NS $\Delta \sim 1 \,\, {\rm MeV}$

- 1966 Suppression of s-wave SF: Wolf
- 1967 Pulsar discovered: Hewish & Bell
- 1969 Pulsar Glitches observed in Vela SF in NS: Baym, Pethick, & Pines
- 1970 ³P₂: Tamagaki & Hofferberg-Glassgold-Richardson-Ruderman
- **1982** Thouless-Kohmoto-Nightingale-Nijs (1985 Kohmoto)
- **1984 Geometric (Berry) phase**
- **1986** Weyl fermions in ³He-A: Volovik
- **1988** Topology in ³He-B: Salomaa-Volovik
- 1997 Observation of chiral anomaly(?)

Topology of SF phases in NS?

2011 ³P₂ in NS core(?): Page *et al.*

2008- Topological periodic table

Pairing Symmetry

	Spin	Orbital	Candidate
singlet <i>s</i> -wave	Odd	Even	Many metals, Fe-based compounds (multiple gaps)
singlet <i>d</i> -wave	Odd	Even	High-Tc cuprates, CeCoIn ₅ , URu ₂ Si ₂
triplet <i>p</i> -wave	Even	Odd	³ He, Sr ₂ RuO ₄ (?), UBe ₁₃ (?), UCoGe, Cu _x Bi ₂ Se ₃ (?), & Neutron stars(?)
triplet <i>f</i> -wave	Even	Odd	UPt ₃

Several candidate materials for topological or Weyl superconductors

but their pairing symmetries are still controversial...

³He is one of established topological & Weyl SC/SF

Normal ³He & Dense Nuclear Matter

Order Parameter for Spin-triplet Superfluids

Spin triplet (*L*=1)
p-wave (*S*=1) OP
$$\begin{pmatrix} \Delta_{\uparrow\uparrow}(k) & \Delta_{\uparrow\downarrow}(k) \\ \Delta_{\downarrow\uparrow}(k) & \Delta_{\downarrow\downarrow}(k) \end{pmatrix} = \begin{pmatrix} -d_x(k) + id_y(k) & d_z(k) \\ d_z(k) & d_x(k) + id_y(k) \end{pmatrix}$$

 $J = S + L = 0, 1, 2$
Matheform $A_{\mu i}$
spin momentum $A_{\mu i} = E_0 \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}_{\mu i} + \begin{pmatrix} 0 & V_1 & V_2 \\ -V_1 & 0 & V_3 \\ -V_2 & -V_3 & 0 \end{pmatrix} + \begin{pmatrix} T_{11} & T_{12} & T_{13} \\ T_{12} & T_{22} & T_{23} \\ T_{13} & T_{23} & T_{33} \end{pmatrix}$
antisymmetric (J=1) H_{13}
 $SO(3)_S \times SO(3)_L \times U(1) \longrightarrow SO(3)_J$
spin orbital $SO(3)_{L-S} \times U(1)$

Spontaneous spin-orbit symmetry breaking: Emergence of spin-orbit interaction

Superfluid ³He

Symmetry Breaking in Superfluid ³He

Symmetry group of ³He spin orbital neglect small residual interaction (dipole int.) $G = \mathrm{SO}(3)_{\mathbf{S}} \times \mathrm{SO}(3)_{\mathbf{L}} \times \mathrm{U}(1)$ **B**-phase A-phase $H = \mathrm{U}(1)_{L_z - \phi} \times U(1)_{S_z}$ $H = \mathrm{SO}(3)_{L+S}$ S + L = 0 $L_z = +1, S_z = 0$ Spin-orbit locked phase Spin & Orbital states are ordered

³He: Paradigm for Topological Phenomena

Review: TM, Y. Tsutsumi, T. Kawakami, M. Sato, M. Ichioka, K. Machida, JPSJ 85, 022001 (2016)

Topology in Real Space

$$\Phi = \oint \mathbf{A} \cdot d\mathbf{r} = \frac{hc}{2e} \mathbf{w}$$

winding number: Topological invariant

mapping from real space to order parameter space

$$\boldsymbol{A}(\boldsymbol{r}) = -i\frac{\hbar c}{2e}\frac{\nabla\Psi}{\Psi} = -i\frac{\hbar c}{2e}\frac{d\varphi(\theta)}{d\theta}\hat{\boldsymbol{e}}_{\theta}$$

$$\pi_1[U(1)] = \mathbb{Z}$$

 \Rightarrow classification of ordered states

e.g., N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979)

Topology in Momentum Space

Quantum Hall States

Hatsugai, PRL '93; PRB '93;

Berry Curvature & Edge States in ³He-A

Gapless edge states carry macroscopic mass current

Weyl Fermions in ³He-A

Bogoliubov quasiparticles around point nodes

Volovik (86); Combescot and Dombre (86)

$$\mathcal{H}(\boldsymbol{k}) = e_j^{\mu} \tau^j (k_{\mu} - k_{\mathrm{F}} \hat{\boldsymbol{l}}_{\mu})$$

$$(e_1^{\mu}, e_2^{\mu}, e_3^{\mu}) = \left(\frac{\Delta}{k_{\rm F}}\hat{m}_{\mu}, \frac{\Delta}{k_{\rm F}}\hat{n}_{\mu}, v_{\rm F}\hat{l}_{\mu}\right)$$

vielbein: dislocation/defect in spatial coordinates induces gauge field (*e.g.*, Sumiyoshi-Fujimoto, PRL (16))

Weyl Fermions in ³He-A

Bogoliubov quasiparticles around point nodes

Volovik (86); Combescot and Dombre (86)

$$\mathcal{H}(\boldsymbol{k}) = e_j^{\mu} \tau^j (k_{\mu} - k_{\mathrm{F}} \hat{\boldsymbol{l}}_{\mu})$$

$$(e_1^{\mu}, e_2^{\mu}, e_3^{\mu}) = \left(\frac{\Delta}{k_{\rm F}}\hat{m}_{\mu}, \frac{\Delta}{k_{\rm F}}\hat{n}_{\mu}, v_{\rm F}\hat{l}_{\mu}\right)$$

vielbein: dislocation/defect in spatial coordinates induces gauge field (*e.g.*, Sumiyoshi-Fujimoto, PRL (16))

Broken Symmetry & skyrmion-vortex in ³He-A

e.g., Salomaa-Volovik, RMP (87)

$$d_{\mu i} = \Delta_{\mathcal{A}} e^{i\varphi} \hat{d}_{\mu} (\hat{\boldsymbol{m}} + i\hat{\boldsymbol{n}})_i$$

Simultaneous gauge-orbit rotation:

phase rotation (vortex) = orbital rotation about "I"

Emergent field in skyrmion-vortex (Mermin-Ho vortex)

Weyl Fermions & Anomaly in ³He-A

Chiral Anomaly: back-action to skyrmion-vortex "Kopnin force"

• Chiral anomaly: Violation of momentum conservation in "fermions"

as a consequence of real-space topology & Weyl-Bogoliubov QPs

$$\partial_t \boldsymbol{P}^{(\mathrm{F})} = \mathcal{C}_0 \int d\boldsymbol{r} \hat{\boldsymbol{l}} \left(\partial_t \hat{\boldsymbol{l}} \cdot \boldsymbol{\nabla} \times \hat{\boldsymbol{l}} \right) \propto \boldsymbol{E} \cdot \boldsymbol{B}$$

Exp.: Bevan *et al.*, Nature **386**, 689 (1997); Volovik, JETP Lett. **103**, 140 (2016)

==> momentum transfer from WF to the "superfluid vacuum"

Superfluid ³He-B

Majorana Fermions

perspective

Majorana returns

Frank Wilczek

In his short career, Ettore Majorana made several profound contributions. One of them, his concept of 'Majorana fermions' — particles that are their own antiparticle — is finding ever wider relevance in modern physics.

Majorana "Ising" Spin

Volovik; Chung-Zhang; Nagato-Higashitani-Nagai; TM-Sato-Machida, ...

 $i\psi_{\uparrow}(oldsymbol{r})=\psi^{\dagger}_{\downarrow}(oldsymbol{r})$

$$\rho(\mathbf{r}) = 0$$
 $\mathbf{S} = (0, 0, S_z)$

Surface MF in ³He-B possess only Ising spin ==> not detectable through density fluctuation

Inversion symmetry is locally broken at surface ⇒ opposite surface MF has opposite helicity

Spin current on surface

Andereev Bound States

Sub-gap structure: anomalous scattering of MF in the presence of disorder (Nagato *et al.* JPSJ (11))

Detecting Surface States

³He-B $\xi \uparrow$ $\xi \uparrow$ $k \downarrow$ $k \uparrow$ $k \uparrow$ $k \uparrow$

sub-gap structure: anomalous scattering of MF in the presence of disorder (Nagato et al.)

<u>Spectroscopy of surface density of states</u> (sub-gap structure & formation of "cone")

Detection of the topological properties of surface states ? Majorana Ising spin and mass acquisition...

Transverse acoustic impedance

Murakawa et al., PRL 103, 155301 (2009); JPSJ 80, 013602 (2011)

OUTLINE

³He and Neutron Stars

³He-A: Weyl fermions & chiral anomaly
 ³He-B: Topology & Majorana fermions

Solution Stars **Second Stars Second Stars Sec**

Topological Phases in Confined Superfluid ³He-B

TM, K. Masuda, and M. Nitta, arXiv:1607.07266
J. A. Sauls and TM, arXiv:1611.07273 (PRB in press)
TM, Y. Tsutsumi, T. Kawakami, M. Sato, M. Ichioka, K. Machida, JPSJ 85, 022001 (2016)

Superfluidity in Neutron Star Interiors

✓ CAS-A: 3P2 may explain the rapid cooling (Page *et al.* (2011))
 ✓ Magnetars: exotic pairing under high magnetic field ~ 10¹⁵G
 ✓ Proton superconductors: Type-I or II (*e.g.*, Link (2003))?

³P₂ Superfluid Phase Diagram

Weyl fermions in Cyclic States

TM, K. Masuda, M. Nitta, arXiv:1607.07266

Topological Defects in ³P₂ Superfluids

Symmetric traceless tensor: 5-component

$$d_{\mu i} = \begin{pmatrix} d_{xx} & d_{xy} & d_{zz} \\ & d_{yy} & d_{yz} \\ & & d_{zz} \end{pmatrix} \Rightarrow \text{spin-2 BEC (e.g., 87Rb atoms)}$$

Non-Abelian fractional vortices: Non-comm. topological charge

Kobayashi, Kawaguchi, Nitta, Ueda, PRL **103**, 115301 (2009) Kawaguchi and Ueda, Phys. Rep. **520**, 253 (2012)

cyclic

Phase Diagram under Magnetic Fields

Phase Diagram under Magnetic Fields

C

Connection of ³P₂ to Solid States

n Cubic Metals

Possible cubic material: UBe₁₃

✓ Heavy fermion: γ (T) = C(T)/T ~ 1 J/molK²

✓ Non-Fermi liquid behavior: $C(T)/T \sim -\log T$

✓ "Unconventional" SC at Tc = 0.85 K

full gap or point node?

Multiple superconducting phases

 $U_{1-x}Th_xBe_{13}$

Multicomponent OP: spin or orbital?

Spin singlet or triplet?

✓ NMR Knight shift unchanged ⇒ triplet? Tien *et al.*, PRB (1989)

✓ μ SR Knight shift slightly decreases at low-T \Rightarrow singlet? Sonier *et al.*, Physica B (2003)

OUTLINE

³He and Neutron Stars

³He-A: Weyl fermions & chiral anomaly
 ³He-B: Topology & Majorana fermions

Solution Second Seco

🝚 Nambu Sum Rule

Topological Phases in Confined Superfluid ³He-B

TM, K. Masuda, and M. Nitta, arXiv:1607.07266
J. A. Sauls and TM, arXiv:1611.07273 (PRB in press)
TM, Y. Tsutsumi, T. Kawakami, M. Sato, M. Ichioka, K. Machida, JPSJ 85, 022001 (2016)

Bosons and Fermions in ³He–B

Spontaneous spin-orbit symmetry breaking: Emergence of spin-orbit interaction

4 Nambu-Goldstone modes + 14 massive bosonic modes

$$(SO(3)_S \times SO(3)_L \times U(1)) \longrightarrow (SO(3)_J) \quad J = 0$$

 $\mathrm{SO}(3)_{\boldsymbol{L}-\boldsymbol{S}} imes \mathrm{U}(1)$ phase & spin-orbit modes

Long-lived amplitude "Higgs" modes

Topologically protected "Majorana" fermions

Emergent SOI is the source of nontrivial topology

Schnyder-Ryu-Furusaki-Ludwig (08); Qi-Hughes-Zhang (09); Volovik (09); Chung-Zhang (09); Nagato-Higashitani-Nagai (09), ...

Paradigm for interplay between bosonic excitations and topological fermions

Consequences of Spontaneous Symmetry Breaking: "Higgs"

U(1) Higgs model:
$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + (D_{\mu} \varphi)^{\dagger} D^{\mu} \varphi - \mathcal{V}[\varphi, \varphi^{\dagger}]$$
 Higgs, PRL (1964)
 $F_{\mu\nu} \equiv \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$ $D_{\mu} \equiv \partial_{\mu} - ieA_{\mu}$

Effective theory for a vector field coupled in a gauge covariant way to a scalar field

First Observations of Amplitude "Higgs" in SC/SF

Observation of a New Sound-Attenuation Peak in Superfluid ${}^{3}\text{He}-B$

R. W. Giannetta,^(a) A. Ahonen,^(b) E. Polturak, J. Saunders,

E. K. Zeise, R. C. Richardson, and D. M. Lee

Laboratory of Atomic and Solid State Physics and Materials Science Center, Cornell University,

Ithaca, New York 14853

(Received 25 March 1980)

VOLUME 45, NUMBER 4

PHYSICAL REVIEW LETTERS

28 July 1980

Measurements of High-Frequency Sound Propagation in ³He-B

D. B. Mast, Bimal K. Sarma, J. R. Owers-Bradley, I. D. Calder, J. B. Ketterson, and W. P. Halperin

Department of Physics and Astronomy and Materials Research Center, Northwestern University, Evanston, Illinois 60201 (Received 10 April 1980)

Volume 45, Number 8

PHYSICAL REVIEW LETTERS

25 August 1980

SC-CDW compound NbSe₂

Raman Scattering by Superconducting-Gap Excitations and Their Coupling

to Charge-Density Waves

R. Sooryakumar and M. V. Klein

Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

(Received 24 March 1980)

Collective Modes in ³He-B

TM and J.A. Sauls, in preparation

Collective Modes in ³He-B

J. A. Sauls and TM, ar>	iv:1611.07273	(PRB in press)
-------------------------	---------------	----------------

Mode	Symmetry	Mass	Name	
$D_{0,m}^{(+)}$	J = 0, c = +1	2Δ	Amplitude	
$D_{0,m}^{(-)}$	J = 0, c = -1	0	Phase Mode	NG U(1): sound
$D_{1,m}^{(+)}$	J = 1, c = +1	0	NG Spin-Orbit Modes	NG SO(3): spin
$D_{1,m}^{(-)}$	J = 1, c = -1	2Δ	AH Spin-Orbit Modes	
$D_{2,m}^{(+)}$	J = 2, c = +1	$\sqrt{\frac{8}{5}}\Delta$	2 ⁺ AH Modes	gapped: sound/spin
$D_{2,m}^{(-)}$	J = 2, c = -1	$\sqrt{\frac{12}{5}}\Delta$	2 ⁻ AH Modes	gapped: sound

*dipole interaction & magnetic field are absent

long-lived massive bosons coupled to sound waves

Vdovin, Maki, Ebisawa, Schopohl, Tewordt, Einzel, Wolfle, Nagai, Sauls, Serene, Rainer, Volovik, ...

Observations of Amplitude Higgs (Squashing) Modes

Attenuation of longitudinal sound wave

Field-splitting of J=2 squashing modes

Avenel, Varoquax, and Ebisawa, PRL 45, 1952 (1980)

Attenuation of longitudinal sound wave

$$\alpha(\omega) \propto \frac{A}{(\omega + i\delta)^2 - [\omega_{20}^-]^2} + \zeta \frac{B}{(\omega + i\delta)^2 - [\omega_{20}^+]^2}$$

PH asymmetry parameter

Fermion-Boson Mass Relations in ³He-B

Nambu identity is realized in broad class of BCS type theories

Application to Top Quark Condensation

Construction of a model for dynamical electroweak symmetry breaking using the idea from ³He-B

G.E. Volovik and M.A. Zubkov, PRD 87, 075016 (2013)

➡Nambu sum rule for a NJL-type theory of top quark condensation

➡ The hint from ³He-B suggests the mass of extra Higgs, ~ 325GeV

Nambu sum rule (if works) may express the mass of "extra Higgs" via quark masses

Nambu's Sum Rule & Higgs

Strong coupling corrections to Nambu's fermion-boson relations?

J. A. Sauls and TM, arXiv:1611.07273 (PRB in press)

Key observation: NSR may be violated by excitation of Higgs bosons with symmetry distinct from that of the fermionic vacuum

(i) Strong-coupling feedback corrections to BCS theory: *High-T TDGL*(ii) Vacuum polarization & interactions in both the **p-h** (Landau) and **p-p** (Cooper) channels — "back-action" of bosonic fluctuations: *Low-T Quasiclassical theory*

Mass Shift due to Strong Coupling Effects

(i) Strong-coupling feedback corrections to BCS theory: *High-T TDGL* (ii) Vacuum polarization & interactions in both the p-h (Landau) and p-p (Cooper) channels — "back-action" of bosonic fluctuations: *Low-T Quasiclassical theory*

The parent state is the Fermi liquid ground state: "Fermionic vacuum"

Calculation of bosonic spectrum arising from the "back-action" of the fermionic vacuum requires the theory that includes both fermonic and bosonic degrees of freedom

Superfluid Fermi Liquid Theory

high-energy contributions are represented by phenomenological parameters

$$\mathbf{F}_{l}^{\text{s}} = \mathbf{F}_{l}^{(\text{a})} + \mathbf{F}_{$$

Fermi liquid parameters (scalar & spin exchange)

Do Interactions & polarizations of the fermionic vacuum violate the sum rule?

Vacuum Polarization Corrections

Observation 1 Masses of *J*=0 and *J*=1 bosonic modes are unrenormalized by interactions

the spin NG mode acquires a mass when magnetic dipole int. is taken into account ==> Little Higgs: $M_{J,+}$ = 10kHz << 2 Δ ~ 100MHz

Dynamical equations for spin-triplet bosonic modes

generalized Tsuneto fn.:
 fermionic self-energies

$$\vec{d}^{(-)}(\hat{p};\boldsymbol{\omega}) = -\int \frac{d\Omega_{p'}}{4\pi} V^{(1)}(\hat{p},\hat{p}') \left\{ \left[\frac{1}{2}\gamma + \frac{1}{4}(\boldsymbol{\omega}^2 - 4|\Delta|^2)\bar{\lambda}(\boldsymbol{\omega}) \right] \vec{d}^{(-)}(\hat{p}';\boldsymbol{\omega}) + \bar{\lambda}(\boldsymbol{\omega})\vec{\Delta}(\hat{p}')(\vec{\Delta}(\hat{p}')\cdot\vec{d}^{(-)}(\hat{p}';\boldsymbol{\omega})) - \frac{1}{2}\boldsymbol{\omega}\bar{\lambda}(\boldsymbol{\omega})\vec{\Delta}(\hat{p}')\boldsymbol{\Sigma}^{(+)}(\hat{p}';\boldsymbol{\omega}) \right\}, \text{homogeneous equation}$$

Bosonic fluctuations couple to fluctuation of self-energies linearly in $\boldsymbol{\omega}$

Nambu-Goldstone modes

$$(J = 0^+, 1^-) (\omega^2 - 4|\Delta|^2) \mathcal{D}(\omega) = 0$$

 $J = 0^{-}, 1^{+}$

cannot couple to neither self-energy fluct., residual pairing (*d*-, *f*-, ...), nor external fields

Vacuum Polarization Corrections

Observation 2 In *J*=2, the NSR is not protected against the polarizations of fermion vacuum

EOM for J=2⁻:
$$\left[\omega^2 - (M_{2,-}^{(0)})^2 \right] \mathcal{D}_{2,m}^- + \frac{8}{5} \Delta^2 \mathcal{F}_{2,m}^- = \frac{4}{5} \Delta \omega \Sigma_{2,m}^+$$
bare massJ=2 f-wave fluctpolarization of fermion vacuum

Spin-fluctuation model predicts the subdominant *f*-wave attraction & the *f*-wave fluctuations can be coupled only to *J*=2 bosonic modes

$$\begin{aligned} d_{\mu}(\boldsymbol{p}) &= \mathcal{D}_{\mu i} \hat{p}_{i} + \mathcal{F}_{\mu, i j k} \hat{p}_{i} \hat{p}_{j} \hat{p}_{k} \\ \mathbf{J} = \mathbf{2}, \, \mathbf{S} = \mathbf{1}, \, \mathbf{L} = \mathbf{1} \quad \mathbf{J} = \mathbf{2}, \, \mathbf{S} = \mathbf{1}, \, \mathbf{L} = \mathbf{3} \end{aligned} \qquad \qquad T_{c}^{f} \ll T_{c}^{p} \end{aligned}$$

Self-energy fluctuations

$$\left[1 + \frac{1}{5}F_2^{\rm s}\lambda(\omega)\right]\Sigma_{2,m}^+(\omega) = \frac{1}{5}F_2^{\rm s}\lambda(\omega)\left(\frac{\omega}{2\Delta}\right)\left[\mathcal{D}_{2,m}^-(\omega) + \mathcal{F}_{2,m}^-(\omega)\right]$$

Pair fluctuations polarizes the *J*=0 condensate vacuum & generate an internal stress proportional to

- 1. Fermi liquid parameter (particle-hole interaction channel)
- 2. time-derivative of bosonic mode amplitudes

J=0 condensate vacuum

Vacuum Polarization Corrections to Masses of J=2 Modes

Mass Shift of J=2⁺ Squashing Modes in ³He-B

Subdominant attractive *f*-wave interaction plays an essential role

➡ The violation of the NSR for J=2 modes is order of 20-30% in low temperatures

Nambu relation can be maintained in J=0 sector

$$(M_J^+)^2 + (M_J^-)^2 = (2m_f)^2$$

In J=O sector, the residual interaction (dipole interaction) explicitly breaks the spin-orbit symmetry, and thus the spin-orbit NG boson acquires masses: pseudo NG bosons

Excitations of J=2 bosons generate the polarization of J=0 condensate vacuum and the back-action of vacuum polarization leads to the mass shift of J=2 bosons

- bosons with the symmetry distinct from that of the vacuum may violate the Nambu's mass relation
- The mass relation in the vacuum sector is always rigorous ? Symmetry protection of Nambu identity?

Summary

³He & NS interiors: Topological aspect of unconventional SF

- ➡ Weyl fermions & anomaly in ³He-A
 - (1) I-texture: effective gauge field for Weyl fermions
 - (2) "Torsional" magnetic field due to l-texture
 - ==> torsional chiral magnetic effect?

$$\mathcal{H}(\boldsymbol{k}) = e_j^{\mu} \tau^j (k_{\mu} - k_{\mathrm{F}} \hat{\boldsymbol{l}}_{\mu})$$

$$(e_1^{\mu}, e_2^{\mu}, e_3^{\mu}) = \left(\frac{\Delta}{k_{\rm F}}\hat{m}_{\mu}, \frac{\Delta}{k_{\rm F}}\hat{n}_{\mu}, v_{\rm F}\hat{l}_{\mu}\right)$$

Torsional CME in Weyl semi-metals: Sumiyoshi-Fujimoto, PRL (2016)

➡ Topology of ³He-B: surface Majorana fermions ==> Ising spin & spin current

 \Rightarrow ³P₂ in NS interiors: Nematic (~³He-B), ferro. (~³He-A), cyclic (~³He- α)

Tricritical point & connection to superconductivity in cubic metals

Topology in confined ³He-B

➡Quantum phase transition at the critical field

Fermions: Topological phase transition & mass acquisition of surface MF Bosons: Softening of Ising order excitation (spin-orbit pseudo-NG)

How to detect the Majorana nature of surface states?