<u>千葉工業大学セミナー</u>

とβ崩壊率がピーク生成に与える影響

Nobuya Nishimura

Keele University, UK

Collaborated with

- T. Takiwaki (NAOJ), F-K. Thielemann (U Basel),
- T. Tsujimoto (NAOJ), H. Sawai (RIST/Waseda),
- S. Yamada (Waseda), Zs. Podolyák (U Surrey),
- D.-L. Fang (Jilin U), T. Suzuki (Nihon U)

European Research Council Established by the European Commission

Origin of elements (beyond iron)

Origin of gold (beyond iron)

- <u>Nuclear Physics</u>
 - n-capture and β -decay; produces Eu, Pt, Au, U etc.
- Astronomical Observation
 - Solar/metal-poor stars; Galactic chemical evolution;
- Astronomical Origin (undetermined)
 - core-collapse SN or NS-NS/BH-NS mergers?

"The Elements" T. Gray

"The Elements" T. Gray

Sneden+ (2008) (Möller+ 1997)

Astronomical sites/scenarios

NS-NS/BH-NS

Merger

massive stars

Supernovae

Magnetorotational

Entropy

Magnetie Giele Line

magnetar

neutrino-driven wine

main site?

PNS

compact object binaries

BΗ

NS

<u>Contents</u>

- Astrophysical models for the r-process
 (a brief summary of r-process in NS merger)
- MRD-SNe as r-process
 - as alternative source in early galaxies
- · <u>β-decay</u>
 - as alternative source in early galaxies
- <u>conclusion</u>

references (of our work)

- Wanajo, Sekiguchi, <u>NN</u> et al., ApJL 789 (2014) L39
- <u>NN</u>, Takiwaki & Thielemann, ApJ 810 (2015) 109
- Tsujimoto & <u>NN</u>, ApJL 811 (2015) L10
- <u>NN</u>, Podolyák, Fang & Suzuki, PLB 756 (2016) 273

Astronomical sites of the r-process: NS mergers as a main cosmic source

The r-process: beyond iron

r-process: rapid($\tau_{(n,\gamma)} < \tau_{\beta-decay}$) n-captures

"explosive event" related to neutron stars

RIKEN RIBF Website

Movie by T. Wada (RIKEN)

Massive star's evolution : > 10 M₀

•<u>H-burning</u> $H \rightarrow He$ •<u>He-burning</u> $He \rightarrow C, O$ •<u>C-burning</u> $C \rightarrow Ne, Mg, Na, Al$ •Ne-burning $Ne \rightarrow O, Mg$ •<u>O-burning</u> $O \rightarrow Si, P, S, Cl, Ar, Ca$ •<u>Si-burning</u> $Si \rightarrow Fe$, Ni (iron Group)

 $\rightarrow \text{core-collapse}$ Fe + $\gamma \rightarrow 13$ ⁴He + 4n (photo-disintegration)

proce

100

150

50

0

-2

-4

-6

0

200

<u>Core-Collapse Supernovae: > 10 Mo</u>

observations

- •optical
- •neutrino
- •cosmic ray
- •GW ?
- nucleosynthesi

- **–** SN1987A
- detection of neutrino

The *r*-process: "origin of gold"

based on Sneden+ (2008) ARAA

SNe and PNS winds

Physical condition for r-process

high T and ρ

toand

(1) neutronization (low Y_e) by e-cap. ($p + e^- \rightarrow n + v_e$) (T >1 MeV) NSE (n, p, & α are predominant)

② seed formation (high S) (T > 0.5 MeV) quasi-NSE, α -cap.

Y_e: electron fraction

 $Y_e = Y_p$

 $\sim N_p / (N_n + N_p)$

(low $Y_e = neutron rich$)

(4) decay (β and fission) decay to stable isotopes

(3) rapid-n cap. (high n/Seed) (n, γ) is faster than β -decay

low T and p

Physical condition for r-process

condition for r-process 3rd peak

based on Hoffman et al. (1997)

entropy

Difficulty of Core-collapse Supernovae

Dynamical ejecta of explosion

- •mostly produce iron-group (A<100)</pre>
- exception: EC-SNe (Wanajo et al. 2012)
- ·PNS-wind (neutrino-driven)
 - requires very high entropy
 - $\cdot\,Y_e$ is not low enough
 - \rightarrow the ν p-process (proton-rich nuclei)

Latest results of nucleosynthesis for NDW scenario Wanajo 2013

Similar pattern in r-process observation

Sneden+ (2008) ARAA

- many r-rich Galactic halo stars show agreement with solar pattern
- r-process has happened from the early Galaxy
- astrophysical models reproduce this common pattern (Z>40; A>90)
 - \rightarrow suggests existence of "main" r-process sites CS 31082-001: Hill et al. (2002) produces between 2nd and 3rd peak but not for ALL metal-poor stars; e.g. Honda stars

- 221170: Ivans et al. (2006)
- 1523-0901: Frebel et al. (2007)

Neutron star mergers

<u>collision of neutron stars</u>
easily eject neutron-rich matter
expected as sources of Gravitational wave, (short) GRBs Kilonova/macronova

• But, event rates and role in galactic chemical evolution are poorly known compared to SNe

Solution?: wind ejecta driven by neutrino

 Two different components can explain "universality" ?
 The property of dynamical ejecta is not well known Can dynamical ejecta produce the entire r-process pattern?

A long-standing problem: too neutron-rich

Goriely+ 2011 (e.g., Korobkin+ 2011, Rosswog+ 2013)

of "pure" n-rich matter with $Y_e \ll 0.1$

$$(\mathbf{Y}_e = \mathbf{Y}_p = 1 - \mathbf{Y}_n)$$

severe problem: only A > 130with fission recycling (see, Eichler+ 2015; Shibagaki+ 2016)

new challenge: GR-hydro model

slide by Y.Sekiguchi

- <u>Einstein's equations</u>: Puncture-BSSN/Z4c formalism
- GR radiation-hydrodynamics (Sekiguchi + 2013)
 - Advection terms : Truncated Moment scheme (based on Shibata et al. 2011)
 - Fully covariant and relativistic
 - gray or multi-energy but advection in energy is not included
 - M-1 closure
 - EOS : any tabulated EOS with 3D smooth connection to Timmes EOS
 - Source terms : two options
 - Implicit treatment : Bruenn's prescription
 - Explicit treatment : trapped /streaming v's
 - e-captures: thermal unblocking/weak magnetism; NSE rate
 - Iso-energy scattering : recoil, Coulomb, finite size
 - e±annihilation, plasmon decay, bremsstrahlung
 - diffusion rate (Rosswog & Liebendoerfer 2004)
 - two (beta- and non-beta) EOS method

New NS merger models by Kyoto Group

See, Wanajo, Sekiguchi, NN, Kiuchi, Kyutoku & Shibata ApJL 789 (2014) L39

- Setup for simulation
 - (first principle) full GR hydrodynamics
 - neutrino transport
 - micro physics: EoS, weak interaction
- Physics determining ejecta (neutron-richness / Ye)
 - more-compact neutron stars
 - Strong Gravity
 - => Strong collision (less tidal disruption)
 - => Strong shock heating
 - => high temperature
 - => weak interactions are activated

matter is ejected by tidal disruption + shock heating

A paradigm shift? (since 2014)

<u>BH-NS merger</u> NN, Wanajo, Sekicuchi+ (2016); JPh conf. 665 ejected matter by strong tidal disruption: BH $(4M_{\odot})$ — NS $(1.25M_{\odot})$ → maintaining initial very low Y_e (neutron rich)

Temperature structure

- Steiner's EOS makes compact NS
- compact NS
 - \rightarrow less tidal disruption + strong collision

3D geometry of ejecta

Details: NS masses & EoS in 3D hydro

Wanajo+ in prep.(2016?); NN+ in prep. (2017?)

<u>CC-SNe must be excluded?</u>

CC-SNe must leave from production site of Eu?

<u>NO</u>

- GCE (Eu evolution) can be explained only by NS mergers
- if SN core has <u>strong magnetic fields</u>?

<u>SNe vs NS mergers: exiting discussion (in last two weeks)</u> NIC14 (Niigata) and NAOJ-ECT* workshop <u>Galactic Chemical Evolution: merger + MR-SN?</u> Cescutti+ 2015, A&A 577

- NS mergers need shorter duration 1 Myr
- 100 Myr NS merger
 - + MR-SNe (10% of all CCSN for Z < 10^{-3})

see also, B. Wehmeyer+ 2015, MNRAS 452 detailed study in different event rates for MR-SNe

r-Process nucleosynthesis by Magneto-rotational Supernovae (MR-SNe)

Magneto-rotationally driven (MR) SNe and magnetars

r-process studies

•2D MHD-SNe

- •NN et al. (2009, 2012)
- •Fujimoto, NN and Hashimoto 2008
- (Collapsar: central Black-Hole and disk)
- •3D MHD-SNe with neutrino
 - •Winteler et al. 2012

3D MHD simulation Winteler et al. (2012)

hypernova/jet-like SN

•<u>Magnetar</u>

•strong magnetic field $\sim 10^{15} \, \mathrm{G}$

(\sim 1 % of all neutron stars)

<u>Magneto-driven Supernovae?</u>
GRB central engine
Hypernovae

MR-SNe as origin of r-process elements

NTT15: NN, Takiwaki & Thielemann, ApJ (2015)

- explosion models (Takiwaki+ 2009; 2011):
 - strong magnetic-fields & jet
 - relevant to GRBs, hypernovae, magnetars
- nucleosynthesis
 - can eject very neutron-rich matter

Jet-like explosions, driven by the strong magnetic pressure

Diversity of MR-SNe and r-process

Strong (prompt)-jet

 immediately ejects very n-rich (low Y_e) matter dredged from the SN core (strong e⁻-capture)

• Weaker (delayed) jet

only ejects surface of the PNS and suffers Y_e increase by neutrino absorption

Diversity of MR-SNe and r-process

NN+ 2015; with r-process in metal-poor stars

dimensionality: 2D or not 2D?

in 3D but polar-like jet

deformed jet by the Kink-instability

Mösta+ (2014)

Winteler+ (2012)

Question: How does it change r-process?

NN+ (2015)

- Magnetic driven SNe associated with strong polarjets produce (heavy) r-process elements,
 while weaker explosions show lower production of
 - heavier r-process nuclei (i.e. weak r-process?).

Next questions:

- Really need/exist such strong initial magnetic fields?
- the MRI (magneto-rotational instability) is key?
- MRI induced explosion models must have different nucleosynthesis signatures from canonical CC-SNe. (see, Sawai's talk)

Magneto-rotational instability in CC-SN

Sawai & Yamada (2014, 2016)

- MRI enhance B-fields of the core
- neutrino-heating also affects explosion
- see <u>Talk by H. Sawai</u> for more detail

MRI-driven Jet; plasma-beta

MR-SNe driven by the MRI

Nishimura+ (2015) simulated by <u>T. Takiwaki</u>

Nishimura+ (2016 in prep.) simulated by <u>H. Sawai</u>

- adopts one representative model
 - initial magnetic fields: 10¹¹ G and rotation: 2.5 rad/s
 - neutrino-heating by "light-bulb" with the evolution of neutrino luminosity by IDSA (by Takiwaki)
- changes the neutrino luminosity
- (correspond to different rotation and B-fields in progenitors)

Origin of diversity in metal-poor stars?

Magnetic-fields (MRI + heating models) can be origin of diversity in r-process in metal-poor stars More observation of Honda-type stars? e.g., M. Aoki, Ishimaru, W. Aoki & Wanajo 2016; presentation at NIC14

GCE: early dwarf spheroidal galaxies

Tsujimoto & NN, ApJL (2015)

Chemical evolution models

GCE models suggest:

- rate event: 1/200 CC-SNe
- large Eu ejection: $\sim 10^{-5}$ Msun

agree with our MR-SN models

(e.g. Nishimura+ 2015)

Impacts of Beta-decay on production of r-process peaks

r-process: nuclear physics inputs

 β -decay half-life, (γ ,n), and (γ ,n) are dominant; different nuclear physics inputs change the results: see Koura's talk

Nishimura et al., ApJ (2006)

beta-decay half-lives and the r-process

based on Sneden+ (2008) ARAA

2nd peak (N=82): RIBF@RIKEN experiment

S. Nishimura, PTEP, 2012

<u>new measured half-lives</u> S. Nishimura+, PRL 106, 2011 G. Lorusso+, PRL 114, 2015

NN+, PRC (2012)

applied new experimental data by RIBF (RIKEN)

Nuclear physics uncertainty affects?

Problem: The first-forbidden (FF) transition changes β decay

new rates based on QRPA calculations FBS13: Fang, Brown, Suzuki, PRC88 (2013)

N = 126

vs. MPK03: Gross theory (Möller, Pfeiffer, Kratz 2003)

beta-decay with first forbidden and n-emission

Nuclear physics uncertainty affects?

faster decay enhances 3rd peak production

Impacts of each component in different models

- MR-SN (NN+ 2015)
- Proto-NS wind (Arocnes 2009)
- NS-NS merger (Freiburghouse 1999)

What is the next?: to find "important" reactions

We have fast super computers. Let's go to more comprehensive studies! (project with T. Rauscher, R.Hirschi)

Example for <u>the s-process</u> (smaller computational scales)

evaluate uncertainty Monte-Carlo for relevant reactions

for detail, see My presentation at NIC14 (Niigata); Rauscher+ 2016 arXiv: 1606.05671

impacts on isotopic abundances

UK Supercomputer facility

COSMOS at Cambridge

Key reactions: weak s-proc.

all Lv1 reaction all Lv1+Lv2 reaction

y icat		<u>J. VVC</u>	<u>, an o</u>		are fixed	are fixed
Nuclide	$r_{\rm cor,0}$	$r_{\rm cor,1}$	$r_{\rm cor,2}$	Key reaction Level 1	Key reaction Level 2	Key reaction level 3
Zn64	0.76			64 Cu(+ β) ⁶⁴ Zn		
	-0.47	-0.73			64 Cu(ec) 64 Ni	
Zn67	-0.67			67 Zn $(n,\gamma)^{68}$ Zn		
Ge72	-0.85			$^{72}\text{Ge}(n,\gamma)^{73}\text{Ge}$		
Ge73	-0.84			$^{73}\text{Ge}(n,\gamma)^{74}\text{Ge}$		
Ge74	-0.44	-0.53	-0.67			$^{74}\text{Ge}(n,\gamma)^{75}\text{Ge}$
As75	-0.50	-0.58	-0.70			$^{75}As(n,\gamma)^{76}As$
Se77	-0.86			$^{77}\mathrm{Se}(\mathrm{n},\gamma)^{78}\mathrm{Se}$		
Se78	-0.71			78 Se $(n,\gamma)^{79}$ Se		
	0.37	0.68			68 Zn(n, γ) 69 Zn	
Se80	-0.76			${}^{80}{ m Br}(+\beta){}^{80}{ m Kr}$		
	0.27	0.73			$^{80}\mathrm{Br}(-\beta)^{80}\mathrm{Se}$	
	0.16	0.44	0.88			$^{80}\mathrm{Br}(\mathrm{ec})^{80}\mathrm{Se}$
Br79	-0.63	-0.73			$^{79}\mathrm{Br}(\mathrm{n},\gamma)^{80}\mathrm{Br}$	
Br81	-0.80			$^{81}\mathrm{Kr}(\mathrm{n},\gamma)^{82}\mathrm{Kr}$		
Kr83	-0.76			83 Kr(n, γ) ⁸⁴ Kr		
Kr84	-0.49	-0.64	-0.76			84 Kr(n, γ) 85 Kr
Kr86	0.84			85 Kr(n, γ) 86 Kr		
	-0.31	-0.71			$^{86}\mathrm{Kr}(\mathrm{n},\gamma)^{87}\mathrm{Kr}$	
	-0.33	-0.62	-0.90			85 Kr(+ β) 85 Rb
Rb87	-0.57	-0.64	-0.95			$^{87}\mathrm{Rb}(\mathrm{n},\gamma)^{88}\mathrm{Rb}$

53

<u>Summary</u>

Astronomical origin of r-process nucleosynthesis

- NS-NS mergers
 - main contributor in GCE
 - but need other components in early galaxies?
- MHD-Supernovae
 - can be origin (of e.g. Eu) in early galaxies
 - the differences in rotation and magnetic fields change final r-process abundances; "intermediate" pattern?
- nuclear physics uncertainty
 - beta-decay and r-process peak formation
 - first-forbidden effects accelerate production of heavy r-process peak (3rd)
 - more comprehensive studies in multiple astro-modes (MC approach in future)