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Kondo effect

近藤効果: 磁性不純物の入った金の電気抵抗の低温で
の振る舞い

近藤効果
出典: フリー百科事典『ウィキペディア（Wikipedia）』

近藤効果（こんどうこうか、Kondo effect）と
は、磁性を持った極微量な不純物（普通磁性のある
鉄原子など）がある金属では、温度を下げていくと
ある温度以下で電気抵抗が上昇に転じる現象であ
る。これは通常の金属の、温度を下げていくとその
電気抵抗も減少していくという一般的な性質とは異
なっている。現象そのものは電気抵抗極小現象とよ
ばれ、1930年頃から知られていたが、その物理的
機構は1964年に日本の近藤淳が初めて理論的に解
明した[1]。近藤はこの仕事により1973年に日本学
士院恩賜賞を受章した。
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現象
金属は電圧を加えると、金属内の伝導電子が加速され電流が流れる。これを電気伝導という。

一方で、この伝導電子には電気抵抗がはたらく。金属の電気抵抗の主な要因は、金属内に含まれる不純
物などによる格子欠陥と、原子の熱振動の2つである。不純物による抵抗は温度に依存せず一定であ
る。熱振動による抵抗は、温度を下げると小さくなり、低温では抵抗は温度Tの5乗に比例する。そのた
め、金属の電気抵抗は通常、温度を下げると減少し、絶対零度で、一定値(=不純物による抵抗値）に落
ち着く。

しかし、金属によっては、ある温度までは温度が下がると電気抵抗も減少するが、さらに温度を下げる
と電気抵抗は逆に増大するという、通常では起こりえないふるまいを見せる。この現象は、1933年、
ド・ハース、ド・ブール、ファン・デン・バーグが、金の電気抵抗を測定したときに初めて観測され
た[2]。

その後の研究により、この現象は金(Au)、銀(Ag)、銅(Cu)などに鉄(Fe)、マンガン(Mn)、クロム(Cr)な
どの磁性不純物を微量に加えた金属で起こることが明らかになった。

T 2 (Classical)
logT

(Quantum)

By “infrared divergence”

Kondo effect is firstly observed in experiment as an 
enhancement of electrical resistivity of impure metals.



Jun Kondo
(1930-)

J. Kondo has explained the phenomenon based on the 
second order perturbation of interaction between
conduction electron and impurity.



Conditions for the appearance of Kondo effect

0) Localized (Heavy) impurity

i) Fermi surface

ii) Quantum fluctuation (loop effect)

iii) Non-Abelian property of interaction

(spin-flip int.)
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Second order perturbation theory
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T = T (1) + T (2) + · · ·

At low temperature (IR) regions: T ⌧ D

The perturbative expansion breaks down.

Total amplitude

We need a some non-perturbative method 
to analyze the Kondo effect at IR regions.
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Non-perturbative approach for Kondo effect

Numerical renormalization group

Bethe ansatz

1+1 dim. conformal field theory (CFT) approach

[Wilson]

[Andrei] [Wiegmann] ….

[Affleck-Ludwig]

k(multi)-channel SU(2) Kondo
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Non-perturbative approach for Kondo effect

Numerical renormalization group

1+1 dim. conformal field theory (CFT) approach

[Wilson]

[Affleck-Ludwig]

k(multi)-channel SU(2) Kondo

k-channel SU(N) Kondo with k >= N

k-channel SU(N) Kondo including N > k >1
T. Kimura and S. O, arXiv:1611.07284

Bethe ansatz [Andrei] [Wiegmann] ….



Boundary CFT

H = i 
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Assuming that the impurity is sufficiently dilute, and the 
interaction is a contact-type one, the s-wave approx. is valid, 
which leads to the following one-dim. effective theory:



Boundary CFT

Currents
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Normal order product
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Boundary CFT

Currents

color 

flavor

charge

The Sugawara form of the Hamiltonian density
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Assuming that the impurity is sufficiently dilute, and the 
interaction is a contact-type one, the s-wave approx. is valid, 
which leads to the following one-dim. effective theory:



x

Impurity effect 

Boundary of the theory
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g-factor and Impurity entropy

Partition function
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g-factor and Impurity entropy

g-factor provides the impurity entropy:

Simp = log(gRimp)

Rimp : fundamental representation

ex) SU(2), k=1 (standard Kondo effect)
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log2

0
IR UV

T

Simp = log(2s+ 1)

s = 1/2

Simp ! log2

In UV,

In IR, s ! 0 (Kondo singlet)

Simp ! 0

,



Overscreening Kondo effect in multi-channel SU(2) 
Kondo model

k = 1

Fermi liquid at IR fixed point

: integerg

(single channel)

k = 2

non-Fermi liquid at IR fixed point

: non-integerg

(two channel)

Standard Kondo effect 

Overscreening Kondo effect



N k = 1 k = 2 k = 3 k = 4 k = ∞

2 1 1.4142... 1.6180... 1.7320... 2

3 1 1.6180... 2 2.2469... 3

4 1 1.7320... 2.2469... 2.6131... 4

∞ 1 2 3 4 ∞

TABLE II. Numerical values of the g-factor for the (anti)fundamental representation. It approaches

to an integer in the large (N, k) limit.

where ρ is the Weyl vector (A4), and the q-number [x]q is defined by

[x]q =
qx/2 − q−x/2

q1/2 − q−1/2
. (25)

This q-number is reduced to the ordinary number [x]q → x in the limit q → 1, so that

dimq R → dimR. Therefore, in this limit, the quantum dimension becomes

dimq N
q→1
−→ N. (26)

We remark the anti-fundamental representation N̄ gives the same quantum dimension.

Let us consider the large N behavior of the g-factor. Expanding the expression (24) with

respect to the large N at a fixed k, we obtain

g = k −
k(k2 − 1)

N2

π2

6
+O(N−3) . (27)

In the large N limit, the g-factor is approximated to g = k, and the correction starts with

O(N−2). This implies that the SU(N)k Kondo effect is described as the Fermi liquid in

the large N limit, and thus the low-temperature scaling of the specific heat and so on is

expected to exhibit the Fermi liquid behavior.

Table II shows the numerical values of the g-factor for the (anti)fundamental representa-

tion. Although there is an accidental case giving an integer value for three-channel SU(3)

system SU(3)k=3, we obtain irrational values for k > 1 in general cases. This is a signature

of the non-Fermi liquid behavior at the IR fixed point of the multi-channel Kondo system,

corresponding to zero temperature (ground state). We remark that the coincidence of g-

factor for SU(N)k and SU(k)N reflects the level-rank duality of the Kac–Moody algebra.

The SU(3)3 system is self-dual in this sense (N, k) = (3, 3).

9

g-factor in SU(N) Kondo effect @ IR fixed point
(zero temperature)

For k=1, g-factor is always unity, and thus the system 
becomes the Fermi liquid.

In general with k > 1, the g-factor becomes non-integer, 
which indicates that the system is described by non-Fermi liquid.



1+1 dim. (boundary) CFT approach

Correlation functions are exactly determined by

Conformal symmetry in 1+1 dim.

Kac-Moody algebra

From the correlation functions, one can evaluate T-dep. of several 
observables of k-channel SU(N) Kondo effect in IR regions.
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Specific heat, susceptibility and the Wilson ratio

Bulk contributions to C �&

Cbulk =
⇡

3
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2⇡

These are well known properties of 
free Nk (bulk) fermions in 1+1 dim.  



Impurity contributions to C �&

i) k=1 & arbitrary N [Affleck 1990]

Leading irrelevant operator

From the perturbation w.r.t. 

with k = 1
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Typical Fermi liquid behaviors



Leading irrelevant operator

:adjoint operator, appearing when k >1
 scaling dimension is 

:Fourier mode of 

.

From the perturbation with respect to the leading 
irrelevant operator, we can evaluate                  .Cimp �imp,
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Free energy can be divided in to bulk and impurity parts

which is expressed in terms of the correlation functions 
of the leading irrelevant operators.
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Specific heat of k-channel SU(N) Kondo effect



Specific heat of k-channel SU(N) Kondo effect
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Low T scaling
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For N > k >1, although the g-factor (at IR fixed point) exhibits 
non-Fermi liquid signature, T-dep. of Cimp shows Fermi liquid 
behavior. Fermi/non-Fermi mixing [T. Kimura and S. O, arXiv:1611.07284]
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Low T scaling

Susceptibility of k-channel SU(N) Kondo effect
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The Wilson ratio of QCD Kondo effect

For N >= k, the Wilson ratio is no longer universal, which 
depends on the detail of the system, such as
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Unknown parameters are canceled, and thus the Wilson ratio 
is universal.
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k >= N N > k > 1 

g-factor 
(IR fixed point) non-Fermi non-Fermi

Low T scaling non-Fermi Fermi

Wilson ratio universal non-universal

T. Kimura and S. O, arXiv:1611.07284

IR behaviors of k-channel SU(N) Kondo effect

Fermi/non-Fermi mixing



Application to high energy physics: QCD Kondo effect



Strong interaction

QCD Lagrangian
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Asymptotic freedom in Kondo effect and QCD

⇤
Fermi

Surface

0 ⇤K

G(⇤)

0 ⇤

Kondo effect Running coupling of QCD

q q’

P P’

q’-q

FIG. 2: The tree diagram. Solid and double solid lines are massless and heavy quarks, respectively.

Here ⇧(p2k/m
2) has a rather complicated form (see Refs. [11–15] for the explicit expression).

But in our analysis with the massless QCD, it is su�cient to know that ⇧(p2k/m
2) ! 1 in

the massless limit m ! 0. It should be emphasized that there is a strong screening e↵ect

in the first term of the gluon propagator (4) owing to the gluon mass. The propagator (4)

is an analog of that employed in analyses of the Schwinger model, namely, 1+1 dimensional

QED [16].

A. Tree amplitude

Now we compute the amplitude for scattering between a light (massless) quark near the

Fermi surface and a heavy quark impurity. Under the strong magnetic field, the light quark

moves only in the direction parallel to the magnetic field. In the LLL with e

q

> 0, the spin

of the light quark is fixed to the magnetic field direction. We set the momentum of the

initial quark as positive direction of the z-axis: q
z

> 0. Then, the leading order amplitude

as shown in Fig. 2 is given by

�iM
0

= (ig)2
⇥
ū

LLL

(q0)�µ(TA)
a

0
a

u

LLL

(q)
⇤
DAB

µ⌫

(q0 � q|e
q

B)
⇥
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Asymptotic freedom in Kondo effect and QCD
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and N
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are normalization constants. By using these spinors, we find ū

LLL

�

µ

u

LLL

=

ū
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where µ̄ = 0, 3, and Ū�
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U . Then, in the gluon propagator (4), only

the first term proportional to g
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contributes to the amplitude. Furthermore, as we will

see soon, only forward scattering is allowed in the massless limit of the light quark. Then,
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Asymptotic freedom in Kondo effect and QCD
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Conditions for the appearance of Kondo effect

0) Heavy impurity

i) Fermi surface

ii) Quantum fluctuation (loop effect)

iii) Non-Abelian property of interaction

(spin-flip int.)



Conditions for the appearance of QCD Kondo effect

0) Heavy quark impurity

i) Fermi surface of light quarks

ii) Quantum fluctuation (loop effect)

iii) Color exchange interaction in QCD



QCD Kondo effect

K. Hattori, K. Itakura, S. O. and S. Yasui, PRD92 (2015) 065003
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(light) quark matter with 

charm or bottom quark
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Q



(light) quark matter with µ � ⇤QCD
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q q



q q’

P P’
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FIG. 2: The tree diagram. Solid and double solid lines are massless and heavy quarks, respectively.

Here ⇧(p2k/m
2) has a rather complicated form (see Refs. [11–15] for the explicit expression).

But in our analysis with the massless QCD, it is su�cient to know that ⇧(p2k/m
2) ! 1 in

the massless limit m ! 0. It should be emphasized that there is a strong screening e↵ect

in the first term of the gluon propagator (4) owing to the gluon mass. The propagator (4)

is an analog of that employed in analyses of the Schwinger model, namely, 1+1 dimensional

QED [16].

A. Tree amplitude

Now we compute the amplitude for scattering between a light (massless) quark near the
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⇣
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=
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where µ̄ = 0, 3, and Ū�
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U . Then, in the gluon propagator (4), only

the first term proportional to g
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contributes to the amplitude. Furthermore, as we will

see soon, only forward scattering is allowed in the massless limit of the light quark. Then,
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FIG. 3: One-loop diagrams.

the momentum transfer q

0 � q carried by a gluon equals to zero. Accordingly, the gluon

propagator contributing to the leading order amplitude simplifies to

D

AB

00

=
ig

00

m

2

g

�

AB

, (8)

and the other componets are vanishing. Since in this study we concentrate on the quarks

near the Fermi surface, we set q3 = q

03 = k

F

. Then, the four momentum vectors of the initial

and final state quarks are given by q

0µ = (q00, 0, 0, q03) = q

µ = (q0, 0, 0, q3) = (✏
F

, 0, 0, k
F

) with

✏

F

= k

F

. [need to mention about transverse momentum] The leading scattering amplitude,

thus, reads

�iM
0

= �iG

⇥
ū
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0
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u

LLL

(q)
⇤ ⇥
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⇤
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N 2

q
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1 + sgn(q0

z

)
⌘
�

†
"�" N 2

Q

⇠

†
�

0⇠
�

, (9)

where we have introduced a dimensionful coupling G as

G =
g

2

m

2

g

. (10)

In the large mass limit of the heavy quark impurity: M ! 1, the heavy-quark spin is frozen

as ⇠†
�

0⇠
�

= �

�

0
�

(thus does not play a role in the QCD Kondo e↵ect). The tree amplitude (9)

is proportional to the factor (1 + sgn(q0
z

)), and thus only the forward scattering is allowed.

This is due to the helicity conservation of the massless quarks.
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FIG. 3: One-loop diagrams.
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Renormalization group equation of scattering amplitude
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Renormalization group equation of scattering amplitude

⇤
dG(⇤)

d⇤
= �Nc

2
⇢FG

2(⇤)

Solution
G(⇤) =

G(⇤0)

1 +

Nc
2 ⇢FG(⇤0)log(⇤/⇤0)

Kondo scale (from the Landau pole)

⇤K ' kF exp

✓
� 8⇡

Nc↵slog(⇡/↵s)

◆

⇤0 = ⇤UV ' kF

Initial scale



⇤

Fermi
Surface

⇤00 ⇤K

q q

Q

QCD Kondo effect

The strength of the q-Q interaction increases as the energy scale decreases, 
and the system becomes non-perturbative one below the Kondo scale.

This indicates a change of mobility of light quarks.

Several transport coefficients will be largely affected by QCD Konde effect.

' kF exp

✓
� 8⇡

Nc↵slog(⇡/↵s)

◆

G(⇤)



Magnetically induced QCD Kondo effect

S. O., K. Itakura and Y. Kuramoto, PRD94 (2016) 074013
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Conditions for the appearance of QCD Kondo effect

0) Heavy quark impurity

i) Fermi surface of light quarks

ii) Quantum fluctuation (loop effect)

iii) Color exchange interaction in QCD



0) Heavy quark impurity

i) Strong magnetic field

ii) Quantum fluctuation (loop effect)

iii) Color exchange interaction in QCD

The magnetic field does not affect color degrees of freedom.

“Magnetically induced QCD Kondo effect”
Conditions for the appearance of



Renormalization group equation 

Kondo scale (from the Landau pole)

⇤
dG(⇤)

d⇤
= �Nc

2
⇢LLLG

2(⇤)

solution
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+ log

✓
⇡

↵s

◆1/6
)

'
p
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s exp

⇢
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Nc↵slog(⇡/↵s)

�

G(⇤) =

G(⇤0)

1 +

Nc
2 ⇢LLLG(⇤0)log(⇤/⇤0)



QCD Kondo effect from CFT

T. Kimura and S. O, in preparation 



Non-perturbative
region

Λ

G(Λ)

ΛK ΛUV

Perturbative region

Fermi surface

IR fixed
point

μ

Figure 1: Schematic picture of the flow of the e↵ective interaction G(⇤). The black solid

line is a perturbative flow of G(⇤), while the blue dashed line is a non-perturbative flow. ⇤
K

stands for the Kondo scale. fig:scale_dependence

related to the resistivity

⇢(T ) ⇠ ⇢
u

 
1� ReS(1)

2
+ C�T�

!
(2.25) eq:rho_NFL

where ⇢
u

is the resistivity at the unitary limit, and C is a dimensionless constant which can

be specified by explicit computation of the first order perturbation theory. This factor is

|S(1)| < 1 for the non-Fermi liquid case, |S(1)| = 1 for the Fermi liquid case, and S(1) ! 1

in the large k limit. Although we cannot determine the sign of the temperature dependence

in this formalism, which is given by the sign of the coupling constant �, it is expected that

the correction would be positive for strong coupling and negative for weak coupling region.

We also remark that the resistivity for the Fermi liquid case is given by

⇢(T ) ⇠ ⇢
u

⇥
1� C 0�2T 2

⇤
(2.26) eq:rho_FL

where C 0 is again a dimensionless constant. In this case the finite temperature correction is

negative, and second order in the coupling constant �, while it is first order for the non-Fermi

liquid case.

3 Application to QCD Kondo e↵ect

sec:QCD-Kondo

The QCD Kondo e↵ect is the Kondo e↵ect induced by the color exchange interaction between

light quarks near the Fermi surface and a heavy quark impurity. One of the present authors

8

⇡⇡

⇤QCD

QCD Kondo effect

In order to investigate QCD Kondo effect in IR region below 
Kondo scale, we have to rely on non-perturbative method.



High density QCD in the presence of the heavy quark

1+1 dim.

This is nothing but k-channel SU(N) Kondo model
in 1+1 dim., where 

s-wave

k = 2Nf , N = Nc

 is light quark fields with 2Nf components of flavor

.

and Nc colors. The 2 comes from spin d.o.f. in 4 dim.

(Dimensional reduction)

with G = ↵s log
4µ2

m2
g

= ↵s log
4⇡

↵s
⌧ 1

[E. Shuster & D. T. Son, and T. Kojo et al.]

S

1+1
eff =

Z
d

2
x  ̄ [i�µ@µ] �G †

t

a Q†
t

a
Q

Effective 1+1 dim. theory at high density



g-factor in QCD Kondo effect @ IR fixed point

In general Nc and Nf, the g-factor is non-integer, and thus 
QCD Kondo effect has non-Fermi liquid IR fixed point.

In large Nc limit:

Nc = 3

g =
1 +

p
5

2

g = 2.24598...

g = 2.53209...

(Nf = 1)

(Nf = 2)

(Nf = 3)

Nc ! 1
Fermi liquid at IR fixed point

Nf, : fixed

k = 2Nf

(zero temperature)

g ! k = 2Nf



Specific heat of QCD Kondo effect
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For Nc > 2Nf, QCD Kondo effect shows Fermi/non-Fermi mixing.

Low T scaling



Susceptibility of QCD Kondo effect
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The Wilson ratio of QCD Kondo effect

For Nc >= 2Nf, the Wilson ratio is no longer universal, which 
depends on the detail of the system, such as

RW =
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�imp

Cimp
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�bulk

Cbulk
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3Nc(N2
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� � 2Nf (Nc + 2Nf )
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Unknown parameters are canceled, and thus the Wilson ratio 
of QCD Kondo effect is universal for 2Nf >= Nc.
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2Nf >= Nc Nc > 2Nf 

g-factor 
(IR fixed point) non-Fermi non-Fermi

Low T scaling non-Fermi Fermi

Wilson ratio universal non-universal

IR behaviors of QCD Kondo effect

(k >= N) (N > k >1)

Fermi/non-Fermi mixing



Summary

We apply CFT approach to QCD Kondo effect and determine
its IR behaviors below the Kondo scale.

In the vicinity of IR fixed point, the Kondo system shows Fermi/
non-Fermi mixing for N > k > 1, while it shoes non-Fermi liquid 
behaviors for k >= N.

We develop the CFT approach to general k-channel SU(N)
Kondo effect and investigate its IR behaviors.

Our CFT analysis for k-channel SU(N) Kondo effect can be also
applied to SU(3) Kondo effect in cold atom and SU(4) Kondo 
effect in Quantum dot systems with multi-channels.




