量子アニーリングを用いた クラスタ分析

田中宗 (早稲田大学 高等研究所)

機械学習における重要な技術であるクラスタ分析に 対する、量子アニーリングの性能評価を行った。

量子モンテカルロ法を用いた擬似シミュレーションの結果、 シミュレーテッドアニーリングに比べ、**量子アニーリングの** 方が、性能面で優位であることを示唆する結果を得た。

本講演では、量子アニーリングの基礎について述べた後、 我々の研究結果について紹介する。

K. Kurihara, S. Tanaka, and S. Miyashita, *UAI2009* I. Sato, K. Kurihara, S. Tanaka, H. Nakagawa, and S. Miyashita, *UAI2009* I. Sato, S. Tanaka, K. Kurihara, S. Miyashita, and H. Nakagawa, *Neurocomputing*,**121**, 523 (2013)

共同研究者

🔮 佐藤 一誠 博士 (東大 情報基盤センター、さきがけ研究員)

🔮 栗原 賢一 博士 (グーグル株式会社)

🔮 宮下 精二 教授 (東大院理 物理学専攻)

🔮 中川 裕志 教授 (東大 情報基盤センター)

2つのキーワード

量子アニーリング 量子性を用いた 新計算技術

クラスタ分析

分かることは 分けること

量子アニーリングの基礎

- >物理学と情報科学
- ▶ 量子アニーリングの性能に関する先行研究
- ▶ 量子アニーリングマシン D-Wave の性質

量子アニーリングを用いたクラスタ分析

- クラスタ分析のモデリング
- ▶ 量子アニーリングの導入方法
- ▶ 量子アニーリングの優位性

多数の要素の協同効果を表現する、最も簡単な統計力学模型

 $\sigma_i^z = \pm 1 \quad \clubsuit$

$$\mathcal{H} = -\sum_{\langle i,j \rangle} J_{ij} \sigma_i^z \sigma_j^z - \sum_i h_i \sigma_i^z$$

スピン間の相互作用 スピンに働く磁場
 $J_{ij} > 0$:強磁性的相互作用
 $J_{ij} < 0$:反強磁性的相互作用

千葉工業大学セミナー 2015/07/25

多数の選択肢から、ベストな解を選ぶ問題

千葉工業大学セミナー 2015/07/25

物理学と情報科学組合せ最適化問題

多数の選択肢から、ベストな解を選ぶ問題

巡回セールスマン問題

✔ 各点を一度だけ通過
 ✔ 全ての点を回る
 ✔ コストを最小にする条件

物理学と情報科学組合せ最適化問題

多数の選択肢から、ベストな解を選ぶ問題

巡回セールスマン問題

✔ 各点を一度だけ通過
 ✔ 全ての点を回る
 ✔ コストを最小にする条件

物理学と情報科学組合せ最適化問題

多数の選択肢から、ベストな解を選ぶ問題

巡回セールスマン問題

✔ 各点を一度だけ通過
 ✔ 全ての点を回る
 ✔ コストを最小にする条件

全ての選択肢を試した場合

点が少ない:簡単 点が多い:困難 選択肢の数:N! (10点:10⁶通り、20点:10¹⁸通り)

物理学と情報科学 組合せ最適化問題 多数の選択肢から、ベストな解を選ぶ問題 多変数実関数の最小値(最大値)を取る条件を求める問題 $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} f(\mathbf{x})$ $\mathbf{x} = (x_1, \cdots, x_N)$

物理学と情報科学 組合せ最適化問題 多数の選択肢から、ベストな解を選ぶ問題 多変数実関数の最小値(最大値)を取る条件を求める問題

$\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} f(\mathbf{x})$ $\mathbf{x} = (x_1, \cdots, x_N)$

物理学と情報科学 組合せ最適化問題 多数の選択肢から、ベストな解を選ぶ問題

多変数実関数の最小値(最大値)を取る条件を求める問題 $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} f(\mathbf{x})$ $\mathbf{x} = (x_1, \cdots, x_N)$

都市数	巡回経路数	計算時間(京を利用として)
5	12	10 ⁻¹⁵ 秒
10	2x10 ⁵	2x10 ⁻¹¹ 秒
15	4x10 ⁸	4x10 ⁻⁸ 秒
20	6x10 ¹⁶	6秒
25	3x10 ²³	359日
30	4x10 ³⁰	1401万年

組合せ最適化問題の最適解 = イジングモデルの基底状態

高分子安定構造決定

グラフニ分割問題

集積回路設計

イジングモデル $\mathcal{H}_{\text{opt.}} = -\sum J_{ij}\sigma_i^z\sigma_j^z - \sum h_i\sigma_i^z$ $\langle i,j
angle$ スピン(ビット)間 磁場(強制力) 相互作用 $\sigma_i^z = \pm 1$ ✔ 組合せ最適化問題のハミルトニアン ✓ 基底状態を求めることは困難(組合せ爆発)

様々な分野に、応用展開可能

田中 宗 (早稲田大学 高等研究所)

8

自然現象から着想を得た計算技術

温める

物質を構成する原子が、自在に動き回る。 **熱による「ゆらぎ」現象**

冷やす(アニーリング)

物質を構成する原子が、最適な位置に 自然に落ち着く。 安定状態が自然に作られる(自己組織化)。

シミュレーテッド アニーリング 通常のコンピュータを用いて実装可能な 汎用アルゴリズム

イジングモデルの基底状態を効率よく求める方法

千葉工業大学セミナー 2015/07/25

イジングモデルの基底状態を効率よく求める方法

千葉工業大学セミナー 2015/07/25

イジングモデルの基底状態を効率よく求める方法

千葉工業大学セミナー 2015/07/25

イジングモデルの基底状態を効率よく求める方法

量子ゆらぎ効果

千葉工業大学セミナー 2015/07/25

イジングモデルの基底状態を効率よく求める方法

量子ゆらぎ効果

$\mathcal{H}_{\text{opt.}} = -\sum_{\langle i,j \rangle} J_{ij} \sigma_i^z \sigma_j^z - \sum_i h_i \sigma_i^z \qquad \sigma_i^z = \pm 1 \quad \bigstar$

千葉工業大学セミナー 2015/07/25

$$\mathcal{H}_{\text{opt.}} = -\sum_{\langle i,j \rangle} J_{ij} \sigma_i^z \sigma_j^z - \sum_i h_i \sigma_i^z \qquad \sigma_i^z = \pm 1 \quad \bigstar$$

$$\mathcal{N}$$

$$\mathcal{N}$$

$$\mathcal{D}$$

$$\mathcal{D}$$

$$\mathcal{T}$$

$$\mathcal{D}$$

$$\mathcal{T}$$

$$\mathcal{D}$$

$$\mathcal{T}$$

$$\mathcal{D}$$

$$\mathcal{T}$$

$$\mathcal{D}$$

$$\mathcal{T}$$

千葉工業大学セミナー 2015/07/25

$$\mathcal{H}_{\text{opt.}} = -\sum_{\langle i,j \rangle} J_{ij} \sigma_i^z \sigma_j^z - \sum_i h_i \sigma_i^z \qquad \sigma_i^z = \pm 1 \quad \bigstar$$

$$\mathcal{I} \quad \mathcal{I} \quad \mathcal{I}$$

量子揺らぎ効果(非対角項)の導入

$$\mathcal{H}_{\mathrm{q}} = -\sum_{i} \hat{\sigma}_{i}^{x}$$

$$\hat{\sigma}_i^x = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

千葉工業大学セミナー 2015/07/25

量子揺らぎ効果(非対角項)の導入

$$\mathcal{H}_{\mathrm{q}} = -\sum_{i} \hat{\sigma}_{i}^{x}$$

$$\hat{\sigma}_{i}^{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\hat{\sigma}_{i}^{x} \left|\uparrow\right\rangle = \left|\downarrow\right\rangle \qquad \hat{\sigma}_{i}^{x} \left|\downarrow\right\rangle = \left|\uparrow\right\rangle$$

量子揺らぎ効果(非対角項)の導入

$$\mathcal{H}_{\mathrm{q}} = -\sum_{i} \hat{\sigma}_{i}^{x}$$

$$\hat{\sigma}_{i}^{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\hat{\sigma}_{i}^{x} |\uparrow\rangle = |\downarrow\rangle \qquad \hat{\sigma}_{i}^{x} |\downarrow\rangle = |\uparrow\rangle$$

 $\hat{\sigma}_{i}^{x}\left|\uparrow\right\rangle = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} 1 \\ 0 \end{array}\right) = \left(\begin{array}{c} 0 \\ 1 \end{array}\right) = \left|\downarrow\right\rangle$

量子揺らぎ効果(非対角項)の導入

量子揺らぎ効果(非対角項)の導入

 $\hat{\sigma}_{i}^{x}$ の固有状態 $|\rightarrow\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle + |\downarrow\rangle), \ |\leftarrow\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle - |\downarrow\rangle)$ **重ねあわせ状態の実現**

量子揺らぎ効果(非対角項)の導入

量子揺らぎ効果(非対角項)の導入

 \mathcal{H}_{q} の基底状態: $| \rightarrow \rightarrow \cdots \rightarrow \rangle$

千葉工業大学セミナー 2015/07/25

量子揺らぎ効果(非対角項)の導入

$$\mathcal{H}_{q} = -\sum_{i} \hat{\sigma}_{i}^{x} \qquad \hat{\sigma}_{i}^{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
スピン反転(ビット反転)

$$\hat{\sigma}_{i}^{x} |\uparrow\rangle = |\downarrow\rangle \qquad \hat{\sigma}_{i}^{x} |\downarrow\rangle = |\uparrow\rangle$$
量子力学的遷移

$$\hat{\sigma}_{i}^{x} |\uparrow\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |\downarrow\rangle$$

 \mathcal{H}_q の基底状態: $| \rightarrow \rightarrow \cdots \rightarrow \rangle$

2スピンの場合: $|\rightarrow\rightarrow\rangle = \frac{1}{2}(|\uparrow\uparrow\rangle + |\uparrow\downarrow\rangle + |\downarrow\downarrow\rangle)$

千葉工業大学セミナー 2015/07/25

量子揺らぎ効果(非対角項)の導入

 \mathcal{H}_{q} の基底状態: $| \rightarrow \rightarrow \cdots \rightarrow \rangle$

2スピンの場合: $|\rightarrow\rightarrow\rangle = \frac{1}{2}(|\uparrow\uparrow\rangle + |\uparrow\downarrow\rangle + |\downarrow\downarrow\rangle)$

重ねあわせ状態の実現

量子アニーリングを実行するためのハミルトニアン

組合せ最適化問題のハミルトニアン (2^Nx2^Nの対角行列)

$$\mathcal{H}_{\text{opt.}} = -\sum_{\langle i,j \rangle} J_{ij} \hat{\sigma}_i^z \hat{\sigma}_j^z - \sum_i h_i \hat{\sigma}_i^z \qquad \qquad \hat{\sigma}_i^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

量子揺らぎのハミルトニアン (2^Nx2^Nの非対角行列)

$$\mathcal{H}_{q} = -\sum_{i} \hat{\sigma}_{i}^{x} \qquad \qquad \hat{\sigma}_{i}^{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{array}{c} \mathbf{\mathcal{L}} \mathbf{\mathcal{$$

量子アニーリングを表現する時間依存ハミルトニアン

$\begin{aligned} \mathcal{H}(t) &= A(t)\mathcal{H}_{opt.} + B(t)\mathcal{H}_{q} \\ \uparrow & \uparrow \\ & 1 \\ &$

千葉工業大学セミナー 2015/07/25

物理学と情報科学 量子アニーリング 量子アニーリングを表現する時間依存ハミルトニアン

千葉工業大学セミナー 2015/07/25

千葉工業大学セミナー 2015/07/25

イジングモデルの基底状態を効率よく求める方法

量子ゆらぎ効果

非常にゆっくりパラメータを変えれば、 確実に基底状態に到達する

S. Geman and D. Geman, IEEE Trans. Pattern Anal. Mach. Intell. Vol. 6, 721 (1984) S. Morita and H. Nishimori, J. Math. Phys. Vol. 49, 125210 (2008)

千葉工業大学セミナー 2015/07/25

非常にゆっくりパラメータを変えれば、 確実に基底状態に到達する

S. Geman and D. Geman, IEEE Trans. Pattern Anal. Mach. Intell. Vol. 6, 721 (1984) S. Morita and H. Nishimori, J. Math. Phys. Vol. 49, 125210 (2008)

千葉工業大学セミナー 2015/07/25

非常にゆっくりパラメータを変えれば、 確実に基底状態に到達する

S. Geman and D. Geman, IEEE Trans. Pattern Anal. Mach. Intell. Vol. 6, 721 (1984) S. Morita and H. Nishimori, J. Math. Phys. Vol. 49, 125210 (2008)

千葉工業大学セミナー 2015/07/25

数学的に確実性が保証された計算技術

S. Geman and D. Geman, IEEE Trans. Pattern Anal. Mach. Intell. Vol. 6, 721 (1984) S. Morita and H. Nishimori, J. Math. Phys. Vol. 49, 125210 (2008)

千葉工業大学セミナー 2015/07/25

先行研究の項目に関して、著作権の観点から 発表時に用いたスライドを削除しました。

ご興味のある方は、個別にご連絡ください。

量子アニーリングの基礎

- ▶ 物理学と情報科学
- ▶ 量子アニーリングの性能に関する先行研究
- ▶ 量子アニーリングマシン D-Wave の性質

量子アニーリングを用いたクラスタ分析

- クラスタ分析のモデリング
- ▶ 量子アニーリングの導入方法
- ▶ 量子アニーリングの優位性

2つのキーワード

量子アニーリング 量子性を用いた 新計算技術

クラスタ分析

分かることは 分けること

2つのキーワード 量子アニーリング

イジングモデルの基底状態を効率よく求める方法

量子ゆらぎ効果

田中 宗 (早稲田大学 高等研究所)

22

千葉工業大学セミナー 2015/07/25

膨大なデータを、潜在的意味によって分類

クラスタ分析のモデリング

データ
$$x_i = A, B, \cdots$$
 $x_1 = A, x_2 = B, x_3 = C, x_4 = D, x_5 = E, x_6 = F$
クラスタ $z_i = k$ $z_1 = 1, z_2 = 1, z_3 = 1, z_4 = 2, z_5 = 2, z_6 = 2$

クラスタ分析
$$P(\{z_i\}|\{x_i\}, \alpha)$$
を最大にする $\{z_i\}$ を求める。
ハイパーパラメータ

クラスタ分析のモデリング

クラスタ分析のモデリング

 $\operatorname{argmax}_{\{z_i\}} P(\{z_i\} | \{x_i\}, \alpha) = \operatorname{argmax}_{\{z_i\}} P(\{z_i\}, \{x_i\} | \alpha)$

データのクラスタ形成プロセスをモデリング

新たに入ってきた客は、どのテーブルに座るか?

確率
$$rac{N_k}{N+lpha}$$
 で、k番目のテーブルに座る。

確率
$$rac{lpha}{N+lpha}$$
で、誰も座っていないテーブルに座る。

 N_k : k番目のテーブル

N:レストラン内

客総数

に座っている客数

データのクラスタ形成プロセスをモデリング

状態更新確率

データのクラスタ形成プロセスをモデリング

ハミルトニアンの定義

クラスタ分析のモデリング イジングモデルによる記述

ビット行列(隣接行列)による状態の記述

肉東条件付きイジングモデル

千葉工業大学セミナー 2015/07/25

クラスタ分析のモデリング イジングモデルによる記述

Seating conditions を満たす状態空間内で更新

客2が seating conditions を満たしながら取れる状態の集合

千葉工業大学セミナー 2015/07/25

横磁場を用いて量子アニーリングを実装

$$\mathcal{H} = \mathcal{H}_{c} + \mathcal{H}_{q}$$

$$\mathbf{4SUJ} = \mathcal{H}_{c} + \mathcal{H}_{q}$$

$$\mathcal{H}_{c} = \operatorname{diag} \left[E(\sigma^{(1)}), \cdots, E(\sigma^{(2^{N})}) \right]$$

$$\mathbf{K}_{c} =$$

量子アニーリングの導入方法 Suzuki-Trotter分解

最適化問題を表現する 量子揺らぎを表現する 古典ハミルトニアン ハミルトニアン

 $[\mathcal{H}_{c},\mathcal{H}_{q}]\neq 0$

 $e^{-\beta \mathcal{H}} \neq e^{-\beta \mathcal{H}_{\rm c}} e^{-\beta \mathcal{H}_{\rm q}}$

指数関数 e^{-βH} を計算することが困難

・経路積分表示(Suzuki-Trotter分解)による近似解法

$$\exp\left(-\frac{\beta}{m}\mathcal{H}\right) = \exp\left[-\frac{\beta}{m}\left(\mathcal{H}_{c} + \mathcal{H}_{q}\right)\right]$$
$$\int = \exp\left(-\frac{\beta}{m}\mathcal{H}_{c}\right)\exp\left(-\frac{\beta}{m}\mathcal{H}_{q}\right) + \mathcal{O}\left[\left(\frac{\beta}{m}\right)^{2}\right]$$
$$\text{Trotter}\mathbf{\mathfrak{Y}}(\underline{\mathfrak{W}}\underline{\mathfrak{W}}\underline{\mathfrak{N}}\underline{\mathfrak{P}})$$

d次元量子系をd+1次元にマップ

量子アニーリングの導入方法 アルゴリズム図解

m個のレプリカ間に相互作用が入った擬並列化計算

時間とともに量子揺らぎが弱められる。

K. Kurihara, S. Tanaka, and S. Miyashita, UAI2009 (2009年出版) K. K. Pudenz et al. Phys. Rev. A, 91, 042302 (2015) Quantum Annealing Correction (QAC)も類似概念とみなせる。

千葉工業大学セミナー 2015/07/25

様々なネットワーク構造を取る膨大なデータ

Citeseer
論文引用ネットワーク
2110論文

Co-author Group 3

Netscience 共著者ネットワーク 研究者**1589**人

Wikivote 投票ネットワーク **7115**人

千葉工業大学セミナー 2015/07/25

熱・量子同時制御型アニーリング

最適解を得る経路 第一段階で温度を下げ、

第二段階で量子効果を下げる

K. Kurihara, S. Tanaka, and S. Miyashita, UAI2009.

量子ゆらぎ効果

T. Kadowaki and H. Nishimori, Phys. Rev. E, **58**, 5355 (1998).

> **効率の悪い経路** 第一段階で量子効果を下げ、

第二段階で温度を下げる

絶対ゼロ度(基底状態)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science, 220, 671 (1983).

(熱ゆらぎ効果)

量子アニーリングの優位性 計算条件

熱揺らぎと量子揺らぎを同時に制御

比較実験条件

 $\beta(t) = 0.4m\sqrt{t}$

(シミュレーテッドアニーリング)

最もSAがうまくいく条件

逆温度: $\beta(t) = \beta_0 \log(1+t), \beta_0 \sqrt{t}, \beta_0 t$ ($\beta_0 = 0.2m, 0.4m, 0.6m$)

量子揺らぎ項: $\frac{\beta(t)\Gamma(t)}{m} = \Gamma_0 \frac{\tau}{t}$

 Γ_0 を変えて数値実験を行った。 Trotter数(擬並列数)m = 16は固定。

状態更新確率(量子)

$$p(\tilde{\sigma}_{i}|\sigma\setminus\tilde{\sigma}_{i};\alpha) \propto \begin{cases} \left(\frac{N_{k}}{\alpha+N-1}\right)^{\beta/m} e^{(c_{j,k}^{-}(i)+c_{j,k}^{+}(i))f(\beta,\Gamma)} \\ \mathbf{k}$$
番目のテーブルに座る。
 $\left(\frac{\alpha}{\alpha+N-1}\right)^{\beta/m}$ 誰も座っていないテーブルに座る。

量子モンテカルロ法を適用

千葉工業大学セミナー 2015/07/25

対数尤度(高いほうが良い解)の量子パラメータ初期値依存性

計算結果 量子アニーリングの優位性

2つのキーワード

量子アニーリング 量子性を用いた 新計算技術

クラスタ分析

分かることは 分けること

機械学習における重要な技術であるクラスタ分析に対する、量子アニーリング の性能評価を行った。

量子モンテカルロ法を用いた擬似シミュレーションの結果、シミュレーテッド アニーリングに比べ、**量子アニーリングの方が、性能面で優位**であることを示 唆する結果を得た。

これまでの我々の研究で行ったこと

量子モンテカルロ法を用いた研究 K. Kurihara, S. Tanaka, and S. Miyashita, UAI2009

✔ MNISTデータ(手書き文字5000データ)を30個のクラスタに分類

✔ NIPSコーパス(論文1684報,1000語)を20個のクラスタに分類

✔ Reutersコーパス(記事1000報,2000語)を20個のクラスタに分類

変分ベイズ法を用いた研究 I. Sato, K. Kurihara, S. Tanaka, H. Nakagawa, and S. Miyashita, UAI2009

✔ Reutersコーパス(記事1000報, 12788語)を20個のクラスタに分類
 ✔ Medlineコーパス(論文1000報, 14252語)を20個のクラスタに分類

量子モンテカルロ法を用いた研究

I. Sato, S. Tanaka, K. Kurihara, S. Miyashita, and H. Nakagawa, *Neurocomputing*,**121**, 523 (2013)

✔ Citeseer(論文2110報)をクラスタ分析
 ✔ Netscience(研究者1589人)をクラスタ分析
 ✔ Wikivote(7115人)をクラスタ分析

千葉工業大学セミナー 2015/07/25