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Introduction

Ising spin model

Hamiltonian for a spin system
on the lattice aZd:

H = −
∑
|i−j|=a

JijSiSj .

i, j: labels for lattice points
Si = ±1: spin variable .

Let us consider the ferromagnetic case: Jij ≥ 0.

Spins are aligned parallel ⇒ Energy H takes lower values.

What is properties of the following Gibbsian measure?

µ({Si}) = exp(−H/T + h
∑
i

Si)/Z.

(Z = Tr exp(−H/T + h
∑
i Si): partition function)
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Introduction

Phase structure of the Ising model

Free energy of the system: F (T, h) = −T lnZ = −T ln Tr exp(−H/T + h
∑
i Si).

Rough estimate on F (T, 0):

F (T, 0) ∼ E − T lnW.

(W : Number of spin alignments with H({Si}) = E(:= 〈H〉))

T →∞: The second term becomes dominant, and spins are randomized.

T → 0: The first term becomes dominant, and spins like to be aligned.

Phase structure of Ising spins:

T

h

Tc

For T < Tc, there exists discontinuities in ∂F/∂h when crossing the blue line
(1st order PT line).
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Introduction

Magnetization

M(T, h) =
∂F (T, h)

∂h
= 〈Si〉.

At T < Tc, M jumps as crossing h = 0 (1st order phase transition. )

At h = 0, naive Gibbsian measure µ is not well defined

⇒ The system must be specified with the boundary condition at infinities:

µ(T, h = 0, a) = aµ+(T ) + (1− a)µ−(T ) (0 < a < 1).

with µ±(T ) = µ(T, h→ ±0)
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Introduction

2nd order phase transition
At T = Tc, there exists no discontinuities on first derivatives of F (T, h).

What about second derivatives? ⇒ Magnetic susceptibility:

χ =
∂2F

∂h2
=
∑
i

〈S0Si〉.

As T → Tc + 0, the susceptibility diverges,

χ ∼ |(T − Tc)/Tc|−γ →∞.

Other scaling properties:

C := −(T − Tc)
∂2F

∂T 2
∼ |(T − Tc)/Tc|−α →∞,

M ∼ |(T − Tc)/Tc|β → 0.

Scaling relation (Rushbrook identity):

α+ 2β + γ = 2.

(Only two of scaling exponents are independent!)
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Introduction

Scaling hypothesis

Assume that the free energy G(T − Tc, h) = F (T, h) satisfies (Widom, 1965)

G(λst, λrh) = G(t, h)/λ.

Taking derivatives of the both sides,

M(t, h) = λr+1M(λst, λrh),

χ(t, h) = λ2r+1χ(λst, λrh),

C(t, h) = λ2s+1C(λst, λrh).

Putting h = 0 and λ = 1/|t|s, we get

M(t, 0) ∼ |t|−(r+1)/s, χ(t, 0) ∼ |t|−(2r+1)/s, C(t, 0) ∼ |t|−(2s+1)/s.

Then, α+ 2β + γ = 2 because

α =
2s+ 1

s
, β = −r + 1

s
, γ =

2r + 1

s
.
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Introduction

Block spin transformation (I)
What justifies scaling hypothesis? ⇒ Renormalization Group

Block spin transformation (Kadanoff)

The number of total degrees of freedom: N 7→ N ′. This defines the scaling factor

λ = N ′/N(< 1).

Idea: Long range feature is difficult to be computed from microscopic theory.

Important!

Let’s perform coarse graining, and compute correlations between averaged spins!
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Introduction

Block spin transformation (II)

We can generally denote the BST as

µR({S(R)
i }) =

∑
{Si}

T ({S(R)
i }, {Si})µ({Si}).

T is a transition probability, which satisfies∑
{S(R)
i }

T ({S(R)
i }, {Si}) = 1.

Assumption: µR is also Gibbsian with respect to block spins S
(R)
i :

µR ∝ exp−HR.
HR(S(R)) = RH(S) := − lnµR.

Free energy per unit cell: F (HR) = F (H)/λ.
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Introduction

Renormalization group flow
Operation R can be performed repeatedly on effective Hamiltonians H.

Critical manifold

Renormalized trajectoryFixed point Infinitely massive 
theory

Fixed points H∗ = RH∗⇒ The system shows universal/self-similar behaviors
(Wilson).

Important!

RG provides a useful framework to extract and treat large-scale behaviors.
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Aspects of FRG

Functional renormalization group
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Aspects of FRG General framework

General framework of FRG

Generating functional of connected Green functions:

exp(W [J ]) =

∫
DΦ exp (−S[Φ] + J · Φ) .

infinite dimensional integration!

Possible remedy: Construct nonperturbative relations of Green functions!
(⇒ Functional techniques)

Dyson-Schwinger equations

2PI formalism

Functional renormalization group (FRG)
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Aspects of FRG General framework

Wilsonian renormalization group

Classical action/Hamiltonian: S[φ] =
∫

ddx
[

1
2 (∇φ)2 + m2

2 φ
2 + λ

4!φ
4
]
.

“Block spins”: φp =
∫

ddxe−ipxφ(x) for small momenta p.

Field theoretic formulation of RG (Wilson, Kogut 1974):

exp−SΛ[φ] := NΛ

∫ ∏
|p|≥Λ

dφp exp−S[φ].

Important!

Correlation functions 〈φp1 · · ·φpn〉 with low momenta |pi| ≤ Λ are calculable with
SΛ instead of the microscopic action S.
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Aspects of FRG General framework

Functional/Exact RG (I)

Schwinger functional Wk with an IR regulator Rk:

exp(Wk[J ]) =

∫
Dφ exp

(
−S[φ]− 1

2
φ ·Rk · φ+ J · φ

)
.

Rk: IR regulator, which controls low-energy excitations (p2 ≤ k2).

k-derivatives of the both sides:

∂k exp(Wk[J ]) =

∫
Dφ− 1

2
φRkφ exp

(
−S[φ]− 1

2
φRkφ+ Jφ

)
= −1

2

δ

δJ
Rk

δ

δJ
expWk[J ]

Flow equation

∂kWk = −1

2

δWk

δJ
Rk

δWk

δJ
− 1

2
Rk

δ2Wk

δJδJ
.
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Aspects of FRG General framework

Functional/Exact RG (II)

The 1PI effective action Γkis introduced via the Legendre trans.:

Γk[ϕ] +
1

2
ϕ ·Rk · ϕ = J [ϕ] · ϕ−Wk[J [ϕ]],

which obeys the flow equation (Wetterich 1993, Ellwanger 1994, Morris 1994)

∂kΓk[Φ] =
1

2
STr

∂kRk
δ2Γk[Φ]/δΦδΦ +Rk

=

∂kRk

Properties of Γk: Γk → S as Rk →∞, and Γk → Γ as Rk → 0.

Important!

Functional implementation of “block spin transformations” keeps
all the information of microscopic systems.
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Aspects of FRG General framework

Generalized flow equation of FRG

δSk[Φ]: Some function of Φ with a parameter k. (IR regulator)

space of  

effective 

action

Interacting theory

Noninteracting 
theory

k-dependent Schwinger functional

exp(Wk[J ]) =

∫
DΦ exp [− (S[Φ] + δSk[Φ]) + J · Φ]

Flow equation

−∂kWk[J ] = 〈∂kδSk[Φ]〉J
= exp (−Wk[J ]) ∂k(δSk) [δ/δJ ] exp(Wk[J ])

Consequence

We get a (functional) differential equation instead of a (functional) integration!
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Aspects of FRG Optimization

Optimization

Choice of IR regulators δSk is arbitrary.

Optimization:
space of  

effective 

actions

Interacting theory

Noninteracting 
theories

Choose the “best” IR regulator, which validates
systematic truncation of an approximation scheme.

Optimization criterion (Litim 2000, Pawlowski 2007):

IR regulators δSk make the system gapped
by a typical energy k2/2m of the parameter k.

High-energy excitations (& k2/2m) should
decouple from the flow of FRG at the scale k.

Choose δSk stabilizing calculations and making it easier.
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Aspects of FRG Examples of FRG

Conventional approach: Wetterich equation
At high energies, perturbation theory often works well.
⇒ Original fields control physical degrees of freedom.

IR regulator for bare propagators (∼ mass term): δSk[Φ] = 1
2ΦαR

αβ
k Φβ .

Flow equation of 1PI effective action Γk[Φ] (Wetterich 1993)

∂kΓk[Φ] =
1

2
STr

∂kRk
δ2Γk[Φ]/δΦδΦ +Rk

=

∂kRk
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Aspects of FRG Examples of FRG

FRG beyond the naive one: vertex IR regulator

In the infrared region, collective bosonic excitations emerge quite in common.
(e.g.) Another low-energy excitation emerges in the ΦΦ channel

Vertex IR regulator: δSk = 1
4!g

αβγδ
k ΦαΦβΦγΦδ.

Flow equation with the vertex IR regulator (YT, PTEP2014, 023A04)

∂kΓk[Φ] = + + + + +
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Application of fermionic FRG to the BCS-BEC crossover

Application of fermionic FRG to the BCS-BEC crossover
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Application of fermionic FRG to the BCS-BEC crossover

Cold atomic physics

Ultracold fermions provides examples of strongly-correlated fermions.
High controllability can tune effective couplings with real experiments!

open channel

closed channel
bound state

En
er

gy

Interparticle distance 

-2

-1

0

1

2

0 500 1000 1500 2000

S
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tte
rin

g 
le

ng
th

 [1
00

nm
]

Magnetic field [Gauss]

BCS-BEC 
crossover

BCS phase 
No bound state

BEC phase 
Bound state

(Typically, T ∼ 100nK, and n ∼ 1011−14 cm−3)
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Application of fermionic FRG to the BCS-BEC crossover

BCS-BEC crossover

EFT: Two-component fermions with an attractive contact interaction.

S =

∫
d4x

[
ψ(x)

(
∂τ −

∇2

2m
− µ

)
ψ(x) + gψ1(x)ψ2(x)ψ2(x)ψ1(x)

]

BECBCS
0

Cooper pairs DimersUnitary gas

(Eagles 1969, Legget 1980,
Nozieres & Schmitt-Rink 1985) .

Question
Is it possible to treat EFT systematically to describe the BCS-BEC crossover?
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Application of fermionic FRG to the BCS-BEC crossover

General strategy

We will calculate Tc/εF and µ/εF .
⇒ Critical temperature and the number density must be calculated.

We expand the 1PI effective action in the symmetric phase:

Γk[ψ,ψ] = βFk(β, µ) +

∫
p

ψp[G
−1(p)− Σk(p)]ψp

+

∫
p,q,q′

Γ
(4)
k (p)ψ↑, p2 +qψ↓, p2−qψ↓,

p
2−q′ψ↑,

p
2 +q′ .

Critical temperature and the number density are determined by

1

Γ
(4)
0 (p = 0)

= 0, n =

∫
p

−2

G−1(p)− Σ0(p)
.
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Application of fermionic FRG to the BCS-BEC crossover BCS side

BCS side

Case 1 Negative scattering length (kFas)
−1 � −1.

⇒ Fermi surface exists, and low-energy excitations are fermionic quasi-particles.

Shanker’s RG for Fermi liquid (Shanker 1994)

Yuya Tanizaki (University of Tokyo, RIKEN) FRG & its applications May 10, 2014 @ IT Chiba 25 / 38



Application of fermionic FRG to the BCS-BEC crossover BCS side

Functional implementation of Shanker’s RG

RG must keep low-energy fermionic excitations
under control.
⇒ δSk =

∫
p
ψpR

(f)
k (p)ψp with

R
(f)
k (p) = sgn(ξ(p))

(
k2

2m
− |ξ(p)|

)
θ

(
k2

2m
− |ξ(p)|

)

Flow equation of the self-energy Σk and the four-point 1PI vertex Γ
(4)
k :

∂k = ∂k = +

Yuya Tanizaki (University of Tokyo, RIKEN) FRG & its applications May 10, 2014 @ IT Chiba 26 / 38



Application of fermionic FRG to the BCS-BEC crossover BCS side

Flow of fermionic FRG: effective four-fermion interaction

Particle-particle loop ⇒ RPA & BCS theory

Particle-hole loop gives screening of the effective coupling at k ∼ kF

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5

-∂
k(

Γ
k(4

) )-1
/2

m

k/√2m µ

PP flow
PP+PH flow

Screening due to 

PH loop

(YT, G. Fejős, T. Hatsuda,
arXiv:1310.5800)

TBCS
c = εF

8eγE−2

π e−π/2kF |as| ⇒ TBCS
c /2.2. (Gorkov, Melik-Barkhudarov, 1961)
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Application of fermionic FRG to the BCS-BEC crossover BCS side

Flow of fermionic FRG: self-energy

Local approximation on self-energy: Σk(p) ' σk.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  1  2  3  4  5  6  7  8

σ k
/µ

k/√ 2 mµ

~1/k

(kFas)
-1 = 0

(kFas)
-1 = -1

(kFas)
-1 = -2

(YT, G. Fejős, T. Hatsuda,
arXiv:1310.5800)

High energy: σk ' (effective coupling)×(number density) ∼ 1/k

Low energy: ∂kσk ∼ 0 due to the particle-hole symmetry.
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Application of fermionic FRG to the BCS-BEC crossover BCS side

Transition temperature and chemical potential in the BCS side

(YT, G. Fejős, T. Hatsuda, arXiv:1310.5800)
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ε F

1/(kFas)
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 0.3
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µ/
ε F

1/(kFas)
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    PP
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Consequence

Critical temperature Tc/εF is significantly reduced by a factor 2.2 in
(kFas)

−1 . −1, and the self-energy effect on it is small in this region.

µ(Tc)/εF is largely changed from 1 even when (kFas)
−1 . −1.
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Application of fermionic FRG to the BCS-BEC crossover BEC side

BEC side

Case 2 Positive scattering length : (kFas)
−1 � 1

⇒ Low-energy excitations are one-particle excitations of composite dimers.

atom

atom

dimer

Several approaches for describing BEC of composite bosons. (Pros/Cons)

Auxiliary field method
(Easy treatment within MFA/ Fierz ambiguity in their introduction)

Fermionic FRG (⇐ We develop this method!)
(Unbiased and unambiguous/ Nonperturbative treatment is necessary)
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Application of fermionic FRG to the BCS-BEC crossover BEC side

Vertex IR regulator & Flow equation

Optimization can be satisfied with the vertex IR regulator:

δSk =

∫
p

g2R
(b)
k (p)

1− gR(b)
k (p)

∫
q,q′

ψ↑, p2 +qψ↓, p2−qψ↓,
p
2−q′ψ↑,

p
2 +q′

Flow equation up to fourth order (YT, PTEP2014 023A04, YT, arXiv:1402.0283):

∂k = ∂k = +

Effective boson propagator in the four-point function:

1

Γ
(4)
k (p)

= −m
2as

8π

(
ip0 +

p2

4m

)
−R(b)

k (p)
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Application of fermionic FRG to the BCS-BEC crossover BEC side

Flow of fermionic FRG: self-energy

Flow equation of the self-energy:

∂kΣk(p) =

∫
l

∂kΓ
(4)
k (p+ l)

il0 + l2/2m+ 1/2ma2
s − Σk(l)

.

If |Σk(p)| � 1/2ma2
s,

Σk(p) '
∫
l

Γ
(4)
k (p+ l)

il0 + l2/2m+ 1/2ma2
s

'
∫

d3q

(2π)3

(8π/m2as)nB(q2/4m+ m2as
8π R

(b)
k (q))

ip0 + q2

4m + m2as
8π R

(b)
k (q)− (q+p)2

2m − 1
2ma2s

.

Estimate of |Σk(p)|:

|Σk(p)| . 1

2ma2
s

× (
√

2mTas)
3 × nB(k2/4m).

⇒ Our approximation is valid up to (k2/2m)/T ∼ (kFas)
3 � 1.
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Application of fermionic FRG to the BCS-BEC crossover BEC side

Critical temperature in the BEC side

Number density:

n =

∫
p

−2

ip0 + p2/2m+ 1/2ma2
s − Σ0(p)

' (2mTc)
3/2

π2

√
π

2
ζ(3/2).

Critical temperature and chemical potential:

Tc/εF = 0.218, µ/εF = −1/(kFas)
2.

⇒ Transition temperature of BEC.

Consequence

FRG with vertex regulator provides a nonperturbative description of many-body
composite particles.
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Application of fermionic FRG to the BCS-BEC crossover BCS-BEC crossover

fermionic FRG for the BCS-BEC crossover

We discuss the whole region of the BCS-BEC crossover with fermionic FRG.
⇒ Combine two different formalisms appropriate for BCS and BEC sides.

Minimal set of the flow equation for Σk and Γ
(4)
k :(YT, arXiv:1402.0283)

∂k = +

∂k = +
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Application of fermionic FRG to the BCS-BEC crossover BCS-BEC crossover

Flow of fermionic FRG with multiple regulators

Flow of four-point vertex:
Important property: fermions decouple from RG flow at the low energy region.

In BCS side, fermions decouples due to Matsubara freq. (k2/2m . πT ).

In BEC side, fermions decouples due to binding E. (k2/2m . 1/2ma2
s).

Approximation on the flow of the four-point vertex at low energy:

∂k '

Flow of self-energy:
At a low-energy region, the above approx. gives

∂k = +

' ∂k
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Application of fermionic FRG to the BCS-BEC crossover BCS-BEC crossover

Qualitative behaviors of the BCS-BEC crossover from f-FRG

Approximations on the flow equation have physical interpretations.

Four-point vertex: Particle-particle RPA. The Thouless criterion
1/Γ(4)(p = 0) = 0 gives

1

as
= − 2

π

∫ ∞
0

√
2mεdε

[
tanh β

2 (ε− µ)

2(ε− µ)
− 1

2ε

]

⇒ BCS gap equation at T = Tc.

Number density: n = −2
∫

1/(G−1 − Σ).

n = −2

∫ (T )

p

G(p)− ∂

∂µ

∫ (T )

p

ln

[
1 +

4πas
m

(
Π(p)− mΛ

2π2

)]
.

⇒ Pairing fluctuations are taken into account. (Nozieres, Schmitt-Rink, 1985)

Consequence

We established the fermionic FRG which describes the BCS-BEC crossover.
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Summary

Summary

RG provides a useful framework to extract and treat large-scale behaviors.

Functional implementation of coarse graining provides systematic treatment
of field theories.

Fermionic FRG is a promising formalism for interacting fermions.
⇒ Separation of energy scales can be realized by optimization.
⇒ Very flexible form for various approximation schemes.

Fermionic FRG is applied to the BCS-BEC crossover.
⇒ BCS side: GMB correction + the shift of Fermi energy from µ.
⇒ BEC side: BEC without explicit bosonic fields.
⇒ whole region: Crossover physics is successfully described at the
quantitative level with a minimal setup on f-FRG.
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