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Ising spin model

Hamiltonian for a spin system

[ 'Y 'Y [
on the lattice aZ?: V') % 4/*Z
H=- Y J;SS;.

li—jl=a % lf l/'
A A A

1,7: labels for lattice points
S; = *1: spin variable .

Let us consider the ferromagnetic case: J;; > 0.

@ Spins are aligned parallel = Energy H takes lower values.
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Introduction

Ising spin model

Hamiltonian for a spin system

[ 'Y 'Y [
on the lattice aZ?: V') % 4/*Z
H=- Y J;SS;.

li—jl=a % lf I/'
A A A

1,7: labels for lattice points
S; = *1: spin variable .

Let us consider the ferromagnetic case: J;; > 0.

@ Spins are aligned parallel = Energy H takes lower values.

What is properties of the following Gibbsian measure?
n({Si}) = exp(=H/T + h Z Si)/Z.
(Z =Trexp(—H/T + h)_, S;): partition function)
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Phase structure of the Ising model
Free energy of the system: F(T,h) = —TInZ = —TInTrexp(—H/T+h}_,S;).
Rough estimate on F(T',0):
F(T,0) ~ E—TInW.

(W: Number of spin alignments with H({S;}) = E(:= (H)))
@ T — 00: The second term becomes dominant, and spins are randomized.

@ T — 0: The first term becomes dominant, and spins like to be aligned.
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Phase structure of the Ising model
Free energy of the system: F(T,h) = —TInZ = —TInTrexp(—H/T+h}_,S;).
Rough estimate on F(T',0):
F(T,0) ~ E—TInW.

(W: Number of spin alignments with H({S;}) = E(:= (H)))
@ T — 00: The second term becomes dominant, and spins are randomized.

@ T — 0: The first term becomes dominant, and spins like to be aligned.

Phase structure of Ising spins:

Te T

For T' < T, there exists discontinuities in 9F/0h when crossing the blue line
(1st order PT line).
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Introduction

Magnetization
_OF(T,h) ‘

At T < T., M jumps as crossing h = 0 (1st order phase transition. )
At h = 0, naive Gibbsian measure i is not well defined

= The system must be specified with the boundary condition at infinities:
w(T,h=0,a) =aps(T)+ (1 —a)u_(T) (0<a<l).
with py(T) = (T, h — £0)
M M

R

h h
%T<TC T>T,
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2nd order phase transition

At T = T,, there exists no discontinuities on first derivatives of F/(T', h).
What about second derivatives? = Magnetic susceptibility:

O*F
X = R Z<505i>-

3

As T'— T, 4+ 0, the susceptibility diverges,
X~ |(T-=T.)/T.|" = oc.
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2nd order phase transition
At T = T,, there exists no discontinuities on first derivatives of F/(T', h).
What about second derivatives? = Magnetic susceptibility:

O*F
X=9nz = Z<505i>-

As T'— T, 4+ 0, the susceptibility diverges,
X~ |(T-=T.)/T.|" = oc.
Other scaling properties:
0*F

T2
M ~ |((T-T.)/T.)? —o.

C = —(I'-T.) ~ (T —T,)/Te| ™ — o0,
Scaling relation (Rushbrook identity):
a+28+y=2.

(Only two of scaling exponents are independent!)
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Scaling hypothesis
Assume that the free energy G(T — T., h) = F(T, h) satisfies (Widom, 1965)
GA'L, A"h) = G(t, h) /.

Taking derivatives of the both sides,

M(t,h) = ANTEM(Nt, A\"h),
x(t,h) = AFTI(A\t, ATh),
C(t,h) = INTLC(At,A\"h).

Putting h = 0 and A = 1/]t|*, we get
M(t,0) ~ |t|—(r+1)/s, X(¢,0) ~ |t|—(2r+1)/8’ C(t,0) ~ |t|—(23+1)/s.
Then, a + 23 + v = 2 because

2s+1 r+1 2r +1
o = ) /8:_ ) Y= .

S S S
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Introduction

Block spin transformation (1)
What justifies scaling hypothesis? = Renormalization Group
Block spin transformation (Kadanoff)

% Ko//
A A0

The number of total degrees of freedom: N — N’. This defines the scaling factor

A=N'/N(<1).
Idea: Long range feature is difficult to be computed from microscopic theory.

Important!
Let’s perform coarse graining, and compute correlations between averaged spins! J
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Introduction

Block spin transformation (1)

We can generally denote the BST as
R) R
nr({5;7)) = 3 TUST Y S Dn({Si))-
{8}
T is a transition probability, which satisfies

S TSI S =1,

{5y
Assumption: pp is also Gibbsian with respect to block spins Si(R):

ur x exp—Hg.
Hp(SW)=RH(S) := —Inpug.

Free energy per unit cell: F(Hg) = F(H)/A\.
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Introduction

Renormalization group flow
Operation R can be performed repeatedly on effective Hamiltonians H.

Critical manifold

= .
Renormalized trajectory  Infinitely massive
theory

Fixed point

Fixed points H* = RH*=> The system shows universal/self-similar behaviors
(Wilson).

Important!
RG provides a useful framework to extract and treat large-scale behaviors. J
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Aspects of FRG

Functional renormalization group
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SRR NEl  General framework

General framework of FRG

Generating functional of connected Green functions:

exp(W[J]) = /D<I> exp (—S[®] + J - ®).
infinite dimensional integration!

Possible remedy: Construct nonperturbative relations of Green functions!
(= Functional techniques)

@ Dyson-Schwinger equations
@ 2Pl formalism

e Functional renormalization group (FRG)
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SRR NEl  General framework

Wilsonian renormalization group

Classical action/Hamiltonian: S[¢] = [ d% {%(V¢)2 + g2 4 %qﬁ‘l].
“Block spins”: ¢, = fddace*ip””gb(x) for small momenta p.
Field theoretic formulation of RG (Wilson, Kogut 1974):

exp —S[¢] ::NA/ H d¢p, exp —S[4].

[p|>A

Important!

Correlation functions (¢, - - - ¢p,, ) with low momenta |p;| < A are calculable with
S\ instead of the microscopic action S.
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Generl framencri
Functional /Exact RG (1)

Schwinger functional W, with an IR regulator Ry:
1
exp(Wi[J /chexp( ]—§¢>~Rk'¢+J«¢>.

Ry IR regulator, which controls low-energy excitations (p? < k2).
k-derivatives of the both sides:

Ok exp(Wi[J])

[ o= gomoen (=il - joms-+ o)

194 )
= 26JRk6 exp Wi [J]

Flow equation
LoWy o oWy 1 62W

WWie = =557 s — 3B 557
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Generl framencri
Functional/Exact RG (Il)

The 1PI effective action I'yis introduced via the Legendre trans.:

1
Lilpl + 50 B = Jlpl -0 = Wil T[],
which obeys the flow equation (wetterich 1993, Ettwanger 1994, Morris 1994)

ORy
Ox Ry _
62I‘k[<1>]/6<1>6<1> + Ry, o

c‘)kI‘k [(I)] = %STI‘

Properties of T'y: Ty — S as Ry — o0, and 'y, — I" as R — 0.

Important!

Functional implementation of “block spin transformations” keeps
all the information of microscopic systems.
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SRR NEl  General framework

Generalized flow equation of FRG

05, [®]: Some function of ® with a parameter k. (IR regulator)

k-dependent Schwinger functional

space of Noninteracting

effective theory

exp(WilJ]) = / DG exp [~ (S[D] + 556 [D]) + T - B] | et

Flow equation

— Wi [J] = (Ok0SK[D])s

Interacting theory

= exp (~WilJ) 04 (05y) [5/0.] exp(WilJ]) =
Consequence
We get a (functional) differential equation instead of a (functional) integration! J

Yuya Tanizaki (University of Tokyo, RIKEN) FRG & its applications May 10, 2014 @ IT Chiba 17 / 38



Aspects of FRG BReIENIFEVT

Optimization

Choice of IR regulators 45}, is arbitrary.

Optimization:
Choose the “best” IR regulator, which validates

systematic truncation of an approximation scheme.

Optimization criterion (Litim 2000, Pawlowski 2007):

@ IR regulators §.S; make the system gapped

by a typical energy k?/2m of the parameter k.

@ High-energy excitations (> k2/2m) should

decouple from the flow of FRG at the scale k.

space of Noninteracting
effective theories k — 00
actions

Interacting theory k — 0

@ Choose 05y stabilizing calculations and making it easier.
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LSRN Nl  Examples of FRG

Conventional approach: Wetterich equation
At high energies, perturbation theory often works well.
= Original fields control physical degrees of freedom.

IR regulator for bare propagators (~ mass term): 65;[®] = 1<I>QRZ‘3¢>5.

—2
E Bt
+I0R,® /2m|
N p " b

Flow equation of 1P| effective action T'y[®] (Wetterich 1993)

Ry
akRk -
52T;[®]/6P6® + Ry,

8ka [‘b] = %STI"
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Examples of FRG
FRG beyond the naive one: vertex IR regulator

In the infrared region, collective bosonic excitations emerge quite in common.
(e.g.) Another low-energy excitation emerges in the ®® channel

Vertex IR regulator: 65, = 4,gk’875<1> Dpd, Ps.
E / E

Flow equation with the vertex IR regulator (YT, PTEP2014, 023A04)

aruin - @+ (Q + (¥ )+ €=+ €31+ )
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Application of fermionic FRG to the BCS-BEC crossover

Application of fermionic FRG to the BCS-BEC crossover
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Application of fermionic FRG to the BCS-BEC crossover

Cold atomic physics

Ultracold fermions provides examples of strongly-correlated fermions.
High controllability can tune effective couplings with real experiments!

- BEC phaseq > () 1
Bound statf
L Eb = W 4

_____ (B e

bound state

0sed channel
S=0
|/ BCS-BEC

| crossover

Energy
Scattering length [100nm]

BCS phase a < (|
No bound state

w00 To00 z
Magnetic field [Gauss]

Interparticle distance

(Typically, T ~ 100nK, and n ~ 1011714 cm=3)
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BCS-BEC crossover

EFT: Two-component fermions with an attractive contact interaction.

5= [t [mx) (aT S ) (@) + 981 ()T (@)@t (2)

.
. A o
Py B >. )
FaR |
| : ) ©
! ! o
\ NS Y )
| # /
o g ¢
N2
BCS Cooper pairs Unitary gas Dimers BEC
0 (kFaS)—l (Eagles 1969, Legget 1980,

Nozieres & Schmitt-Rink 1985)

Question J

Is it possible to treat EFT systematically to describe the BCS-BEC crossover?
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Application of fermionic FRG to the BCS-BEC crossover

General strategy

We will calculate T./er and p/ep.
= Critical temperature and the number density must be calculated.

We expand the 1PI effective action in the symmetric phase:

TufG, 0] = BB+ / 3,167 (p) — Sk(p)]t

A _
+/ T (P ,34000,8—g¥ 50Vt e
P49

Critical temperature and the number density are determined by

_ n:/——Q
rp=0 » G71(p) — Zo(p)’
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Application of fermionic FRG to the BCS-BEC crossover

BCS side

Case 1 Negative scattering length (kpas)™! < —1.
= Fermi surface exists, and low-energy excitations are fermionic quasi-particles.

Shanker's RG for Fermi liquid (Shanker 1994)
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2Bt
Functional implementation of Shanker’'s RG

E
RG must keep low-energy fermionic excitations w
under control..
= 08 = [, 0, R (p)ih, with 2|/
k2 2 N p
() () — LA LA
1) =sn(elw) (5 - 1601 ) 0 (5 - I Pa

Flow equation of the self-energy ¥; and the four-point 1Pl vertex F;f):

a@ﬁ ak><§+>®<
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Application of fermionic FRG to the BCS-BEC crossover {681

Flow of fermionic FRG: effective four-fermion interaction

o Particle-particle loop = RPA & BCS theory
@ Particle-hole loop gives screening of the effective coupling at k ~ kg

0.1 " ‘ | |
PP flow ===
PP+PH flow
0.08 —
“Screening due to
PH loop
g 0.06 —
S
~
=
{?*‘ 0.04 —
T |
. : 3 2 2.
0 05 kA2m ° ® (YT, G. Fejs, T. Hatsuda,
. arXiv:1310.5800)

YE—2
TBCS = ¢ 8e'2 ~p=m/2kplas] = TBOS /9.9 (Gorkov, Melik-Barkhudarov, 1961)
T
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BCS side
Flow of fermionic FRG: self-energy

Local approximation on self-energy: X (p) ~ oy.

16 T T
(keag™ =0 ——
(pagt =1 s

(kFas)-l [N

14

oy /u

7 8 (YT, G. Fejds, T. Hatsuda,
arXiv:1310.5800)

° 1 2 4
K2

@ High energy: o) ~ (effective coupling) x (number density) ~ 1/k

o Low energy: Oxoi ~ 0 due to the particle-hole symmetry.
May 10, 2014 @ IT Chiba 28 /38
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BCS side
Transition temperature and chemical potential in the BCS side

(YT, G. Fejés, T. Hatsuda, arXiv:1310.5800)

PP -oooee
045 PP+PH

PP+PH+SE

Tolee

PP+PH+SE ——
3 .

06 0.4 02 o 2 5

-0.8 -1
1lleag) 1Ulkeag)

Consequence

o Critical temperature T, /eF is significantly reduced by a factor 2.2 in
(kras)~t < —1, and the self-energy effect on it is small in this region.

o w(T.)/er is largely changed from 1 even when (kpas)~' < —1.
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.
BEC side

Case 2 Positive scattering length : (kpas)™! > 1
= Low-energy excitations are one-particle excitations of composite dimers.

atom
[
\ dimer
@0 - >
o / By =
atom
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Application of fermionic FRG to the BCS-BEC crossover BEC side
.
BEC side

Case 2 Positive scattering length : (kpas)™! > 1
= Low-energy excitations are one-particle excitations of composite dimers.

atom
[
\ dimer
0 - >
o / B, = e
atom

Several approaches for describing BEC of composite bosons. (Pros/Cons)

@ Auxiliary field method
(Easy treatment within MFA/ Fierz ambiguity in their introduction)

@ Fermionic FRG (<= We develop this method!)
(Unbiased and unambiguous/ Nonperturbative treatment is necessary)
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Application of fermionic FRG to the BCS-BEC crossover BEC side

Vertex IR regulator & Flow equation

Optimization can be satisfied with the vertex IR regulator:

2 p(b)
g-Ry, (p) - —
6Sk:/— Ve W o 2 r ey

pl—gR,(Cb)(p) g TE+q ¥l 5 —q¥l5—a' ¥ 5+a

Flow equation up to fourth order (YT, PTEP2014 023A04, YT, arXiv:1402.0283):

=

Effective boson propagator in the four-point function:

1 m2a, ( 0 p2> (b
=- '+ —) =R’ (p)
RO om
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BEC side
Flow of fermionic FRG: self-energy

Flow equation of the self-energy:

B akF§C4)(p+ l)
Xk (p) = /lilo +12/2m + 1/2ma2 — 2k (1)’

If 1Zk(p)| < 1/2ma2,

Yi(p) =~ / Lo+
4§ S04+ 12/2m + 1/2ma?

/ g (87/m2as)np(q?/4m + ™ ‘“R(b)( ))
i D P

2
2ma?

Estimate of | Xk (p)|:

Zk(p)| < x (V2mTay)? x np(k?/4m).

1
2ma?

= Our approximation is valid up to (k?/2m)/T ~ (kras)® < 1.
T



BEC side
Critical temperature in the BEC side

Number density:

B —2

"= /Z,ip0+p2/2m+1/2ma§—20(p)
_ (2mT.)32 \/?
~ 56/

Critical temperature and chemical potential:
T./er = 0.218, pler = —1/(kpag)?.
= Transition temperature of BEC.

Consequence

FRG with vertex regulator provides a nonperturbative description of many-body
composite particles.
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BCS-BEC crossover
fermionic FRG for the BCS-BEC crossover

We discuss the whole region of the BCS-BEC crossover with fermionic FRG.
= Combine two different formalisms appropriate for BCS and BEC sides.

Minimal set of the flow equation for ¥, and F,(:l):(YT, arXiv:1402.0283)
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SRS e
Flow of fermionic FRG with multiple regulators

Flow of four-point vertex:
Important property: fermions decouple from RG flow at the low energy region.

@ In BCS side, fermions decouples due to Matsubara freq. (k2/2m < 7T).
e In BEC side, fermions decouples due to binding E. (k%/2m < 1/2ma?).

Approximation on the flow of the four-point vertex at low energy:

5 GED=18_18=4
Flow of self-energy:

At a low-energy region, the above approx. gives

Oy — J— = S +
"
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BCS-BEC crossover
Qualitative behaviors of the BCS-BEC crossover from f-FRG

Approximations on the flow equation have physical interpretations.

Four-point vertex: Particle-particle RPA. The Thouless criterion
1/T®(p =0) = 0 gives

_:__/ JIade lM_il

2(e — p) 2e

= BCS gap equation at T'=T.,.
Number density: n= -2 [1/(G™! = %).

(T) o [T 4mag mA
n:—2/p G(p)—a—u/p ln[l—l— i (H(p)—ﬁ)].

= Pairing fluctuations are taken into account. (Nozieres, Schmitt-Rink, 1985)

Consequence
We established the fermionic FRG which describes the BCS-BEC crossover. J
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Summary

RG & its applications



Summary

Summary

@ RG provides a useful framework to extract and treat large-scale behaviors.

@ Functional implementation of coarse graining provides systematic treatment
of field theories.

@ Fermionic FRG is a promising formalism for interacting fermions.
=- Separation of energy scales can be realized by optimization.
= Very flexible form for various approximation schemes.

@ Fermionic FRG is applied to the BCS-BEC crossover.
= BCS side: GMB correction + the shift of Fermi energy from p.
= BEC side: BEC without explicit bosonic fields.
= whole region: Crossover physics is successfully described at the
quantitative level with a minimal setup on f-FRG.
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