変分モンテカルロ法を用いた 有機導体κ-BEDT-TTF塩の 理論研究

千葉工業大学教育センター

物理学教室

渡邊 努

研究分野:物性理論 超伝導,磁性,強誘電...etc

共同研究者

石原純夫(東北大学理学研究科) 横山寿敏(東北大学理学研究科) 小形正男(東京大学理学研究科) 小林憲司(千葉工業大学) 中惇(理化学研究所) 那須譲治(東京大学工学研究科)

10²³個/cm³の電子

電子がイオン格子にぶつかる(散乱される)と、 それが電気抵抗になる。

超伝導体とは何か?

H. Kamerlingh-Onnes

1911年

水銀で<mark>電気抵抗がゼロ</mark> になるのを発見

転移温度 約4K (約-269℃)

絶対温度 [K]

Yasuhiro Asano, Hokkaido University 超伝導Night Club

http://zvineap.eng.hokudai.ac.jp/~asano/nightclub.html

常伝導体

クーパー対がイオン格子と衝突しても、 クーパー対 超伝導ギャップを超えない限り状態は変わらない。

電気抵抗がゼロ!

(平均場近似, 摂動近似など多くの理論)

銅酸化物超伝導の対形成の起源は "恐らく" 反強磁性相互作用!

超伝導研究の問題のまとめ

BCS型超伝導体 ➡ 電子-フォノン相互作用が クーパー対をつくる。

銅酸化物超伝導体 ➡ "恐らく" 反強磁性相互作用が クーパー対をつくる。

多くの非BCS型超伝導体は、電子間のクーロン斥力が 強い多数の電子の系(強相関系)で超伝導を引き起こす。

有機超伝導体 κ-(BEDT-TTF)₂X の 超伝導の発現機構を理解する。 変分モンテカルロ法を用いた解析

Sasaki Lab, Tohoku Univ. http://cond-phys.imr.tohoku.ac.jp/

 $κ-(BEDT-TTF)_2X$ (1987)

 κ -(BEDT-TTF)₂Cu(NCS)₂ T_c=10K κ -(BEDT-TTF)₂Cu[N(CN)₂]Br T_c=11.5K κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl T_c=13K

bis(ethylenedithio)tetrathiafluvalene BEDT-TTF

κ-(BEDT-TTF)₂Xで起こる超伝導

K. Kanoda, J. Phys. Soc. Jpn. 75 (2006) 051007

κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl

κ-(BEDT-TTF)₂Xの 超伝導はどのようにして 起こるか??

基底状態に近い波動関数を仮定

 $\Psi(\mathbf{R}, \alpha, \beta, \gamma, \cdots) : 試行波動関数$ 最適化される変分パラメータ $\mathbf{R} = (\mathbf{r}_{1\uparrow}, \mathbf{r}_{2\uparrow}, \cdots, \mathbf{r}_{1\downarrow}, \mathbf{r}_{2\downarrow}, \cdots) : 全電子の位置座標$ *アン アン アン アン アン アン アン アン F*

・100個以上の電子で、この多重積分を計算するのは不可能
● モンテカルロシミュレーションを使う

・エネルギーが最小となるように変分パラメータを最適化

$$E \cong \frac{1}{N_{\text{sample}}} \sum_{m=1}^{N_{\text{sample}}} \frac{H\Psi(\mathbf{R}_m)}{\Psi(\mathbf{R}_m)}$$

サンプル数 $N_{\text{sample}} = 2.0 \times 10^{6} \sim 5.0 \times 10^{6}$

モンテカルロ法(メトロポリス法)

Jastraw型の試行波動関数 $\Psi(\mathbf{R}) = P\Phi(\mathbf{R})$

7個の変分パラメータを最適化

超伝導と反強磁性の計算結果

ホールが注入された к-BEDT-TTF塩

普通の κ-BEDT-TTF塩 は格子点あたりの電子の数が 1個 だが、特殊な κ-BEDT-TTF塩 が存在する。

κ-(BEDT-TTF)₄Hg_{2.89}Br₈

H.Taniguchi et al., JPSJ. 76, 113709 (2007)

格子点あたりの電子数が0.89個 (最初からホールが注入されている)

銅酸化物超伝導体と同じく、反強磁性相互作用により クーパー対を形成している可能性が高い

T. Watanabe et al, Phys. Rev. B 77, 214505 (2008)

ホールが注入された有機導体 κ-(BEDT-TTF)₄Hg_{2.89}Br₈ 圧力による金属状態の変化は、 ダブロン-ホロンの束縛により理解できる。

T.Watanabe et al., Physica C in press (2014)